Using CAD-Tools and Aerodynamic Codes in a Distributed Conceptual Design Framework

Author(s):  
Kristian Amadori ◽  
Björn Johansson ◽  
Petter Krus
Author(s):  
David G. Ullman ◽  
Thomas G. Dietterich ◽  
Larry A. Stauffer

This paper describes the task/episode accumulation model (TEA model) of non-routine mechanical design, which was developed after detailed analysis of the audio and video protocols of five mechanical designers. The model is able to explain the behavior of designers at a much finer level of detail than previous models. The key features of the model are (a) the design is constructed by incrementally refining and patching an initial conceptual design, (b) design alternatives are not considered outside the boundaries of design episodes (which are short stretches of problem solving aimed at specific goals), (c) the design process is controlled locally, primarily at the level of individual episodes. Among the implications of the model are the following: (a) CAD tools should be extended to represent the state of the design at more abstract levels, (b) CAD tools should help the designer manage constraints, and (c) CAD tools should be designed to give cognitive support to the designer.


Procedia CIRP ◽  
2018 ◽  
Vol 72 ◽  
pp. 586-591
Author(s):  
Haibo Hong ◽  
Zhenhua Jiang ◽  
Yuehong Yin

Author(s):  
Y. K. Teh ◽  
F. Mohd-Yasin ◽  
M. B. I. Reaz ◽  
A. Kordesch

2022 ◽  
pp. 1-28
Author(s):  
Mingyu Lee ◽  
Youngseo Park ◽  
Hwisang Jo ◽  
Kibum Kim ◽  
Seungkyu Lee ◽  
...  

Abstract Tire tread patterns have played an important role in the automotive industry because they directly affect automobile performances. The conventional tread pattern development process has successfully produced and manufactured many tire tread patterns. However, a conceptual design process, which is a major part of the whole process, is still time-consuming due to repetitive manual interaction works between designers and engineers. In the worst case, the whole design process must be performed again from the beginning to obtain the required results. In this study, a deep generative tread pattern design framework is proposed to automatically generate various tread patterns satisfying the target tire performances in the conceptual design process. The main concept of the proposed method is that desired tread patterns are obtained through optimization based on integrated functions, which combine generative models and tire performance evaluation functions. To strengthen the effectiveness of the proposed framework, suitable image pre-processing, generative adversarial networks (GANs), 2D image-based tire performance evaluation functions, design generation, design exploration, and image post-processing methods are proposed with the help of domain knowledge of the tread pattern. The numerical results show that the proposed automatic design framework successfully creates various tread patterns satisfying the target tire performances such as summer, winter, or all-season patterns.


Sign in / Sign up

Export Citation Format

Share Document