scholarly journals In-Plane Fracture of Laminated Fiber Reinforced Composites with Varying Fracture Resistance: Experimental Observations and Numerical Crack Propagation Simulations

Author(s):  
Siva Shankar Rudraraju ◽  
Amit Salvi ◽  
Krishna Garikipati ◽  
Anthony Waas
2012 ◽  
Vol 461 ◽  
pp. 338-342 ◽  
Author(s):  
Da Zhao Deng ◽  
Ji Xiang Luo

Based on the Voronoi cell finite element can also reflect fiber reinforced composites interface to take off the layer and matrix crack propagation of the new cell (X-VCFEM cell)[1]. Combined with the re-mesh strategy and grid dynamic technology, Simulated analysis in different inclusion distribution, interface crack propagation for fiber reinforced composites, the results show that for the model with multiple Voronoi cell, The horizontal tension was the largest; For only a Voronoi cell, The size of the horizontal tension was little change.The result was very important reference value for manufacturing process and engineering application of fiber reinforced composite materials.


2019 ◽  
Vol 24 (1) ◽  
pp. 265-276 ◽  
Author(s):  
Márk Fráter ◽  
Lippo Lassila ◽  
Gábor Braunitzer ◽  
Pekka K. Vallittu ◽  
Sufyan Garoushi

2014 ◽  
Vol 1004-1005 ◽  
pp. 505-508
Author(s):  
Yuan Sha ◽  
Cheng Hong Duan ◽  
Da Huang

The XFEM was used to forecast the sub-interface crack propagation paths of carbon fiber reinforced composites, and the simulation results were compared with the SEM photos. The change of strain energy and damage dissipation energy in this process was also investigated. The results indicated that the existence of fiber had a certain influence on the crack propagation direction. And the structure energy changed along with the crack propagation.


2013 ◽  
Vol 14 (4) ◽  
pp. 573-577 ◽  
Author(s):  
S Sujatha Gopal ◽  
B Shiva Kumar ◽  
P Spoorti ◽  
Jeetender Reddy ◽  
Jayaprakash Ittigi

ABSTRACT Aim Aim of this in vitro study was to evaluate the resistance to fracture of vertically fractured and reattached fragments bonded with fiber-reinforced composites. Materials and methods Root canals of 45 teeth were prepared, and the teeth were intentionally fractured into two separate fragments. Control groups (n = 15 each) consisted unfractured teeth with instrumented and obturated. Fractured teeth were divided into three groups (n = 15) and were attached using (1) dual-cure resin cement (RelyX U100), (2) dual-cure resin cement and polyethylene fiber (Ribbond), (3) dual-cure resin cement and glass fibers (stick-net). Force was applied at a speed of 0.5 mm/min to the root until fracture. Results and statistical analysis Group 1 (RelyX U100 group) demonstrated lowest fracture resistance. Group 4 (control group) showed highest fracture resistance followed by group 2 (Ribbond group) and group 3 (Stick-Net groups). Statistically no significant difference was there between groups 2, 3 and 4. Conclusion Vertically fractured teeth can be treated by filling the root canal space with dual-cure adhesive resin cement or by adding polyethylene fiber or glass fiber to increase the fracture resistance of the reattached tooth fragments, an alternative to extraction. How to cite this article Kumar BS, Spoorti P, Reddy J, Bhandi S, Gopal SS, Ittigi J. Evaluation of Fracture Resistance of Reattached Vertical Fragments Bonded with Fiber-reinforced Composites: An in vitro Study. J Contemp Dent Pract 2013;14(4):573-577.


2012 ◽  
Vol 568 ◽  
pp. 238-241
Author(s):  
Ji Xiang Luo

Based on the Voronoi cell finite element can also reflect fiber reinforced composites interface to take off the layer and matrix crack propagation of the new cell (X-VCFEM cell)[1]. Combined with the re-mesh strategy and grid dynamic technology, Simulated analysis in different inclusion quantity, interface crack propagation for fiber reinforced composites, the results show that for the model with four,nine,sisteen,twenty-five and thirty-six voronoi cell, The horizontal tension was not the largest; For only a Voronoi cell, The size of the horizontal tension was the largest.The result was very important reference value for manufacturing process and engineering application of fiber reinforced composite materials.


2012 ◽  
Vol 155-156 ◽  
pp. 846-850
Author(s):  
Ji Xiang Luo

Based on the Voronoi cell finite element can also reflect fiber reinforced composites interface to take off the layer and matrix crack propagation of the new cell (X-VCFEM cell)[1]. Combined with the re-mesh strategy and grid dynamic technology, Simulated analysis in different angles and different depth-width ratio, interface crack propagation for fiber reinforced composites, the results show that when 0˚< < 90˚, the horizontal tension increases with the increasing; When 90˚< < 180˚, the horizontal tension decreases with the increasing; And when =90˚, the horizontal tension was the largest; the horizontal tension increases with the depth-width ratio increasing. The result was very important reference value for manufacturing process and engineering application of fiber reinforced composite materials.


Sign in / Sign up

Export Citation Format

Share Document