scholarly journals Pressure Decay Testing Methodology for Quantifying Leak Rates of Full-Scale Docking System Seals

Author(s):  
Patrick Dunlap ◽  
Christopher Daniels ◽  
Janice Wasowski ◽  
Nicholas Garafolo ◽  
Nicholas Penney ◽  
...  
2011 ◽  
Vol 13 ◽  
pp. 94-99 ◽  
Author(s):  
Harun Chowdhury ◽  
Firoz Alam ◽  
David Mainwaring

2001 ◽  
Vol 1 (5-6) ◽  
pp. 273-276 ◽  
Author(s):  
A. Banerjee ◽  
M. Lambertson ◽  
J. Lozier ◽  
C. Colvin

Membrane filtration plants for drinking water typically use pressure decay testing in conjunction with particle counting and turbidity to monitor membrane integrity. Pilot plants offer the capability of monitoring permeate quality with both intact and intentionally compromised membranes. We compare data from a particle counter, a pressure decay test and a laser turbidimeter on pilot plants from two different manufacturers of microfiltration membranes.


2018 ◽  
Vol 6 (10) ◽  
pp. e13712 ◽  
Author(s):  
Andrew B. Servais ◽  
Cristian D. Valenzuela ◽  
Alexandra B. Ysasi ◽  
Willi L. Wagner ◽  
Arne Kienzle ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6663
Author(s):  
Agata Szeląg ◽  
Katarzyna Baruch-Mazur ◽  
Krzysztof Brawata ◽  
Bartosz Przysucha ◽  
Dominik Mleczko

This paper contains a detailed description of the design and validation of a measurement stand for testing the airborne sound insulation of specimens made at a small scale. The stand is comprised of two coupled reverberation rooms in which the geometry represents the full-size reverberation rooms used at the AGH University of Science and Technology at a 1:8 scale. The paper proves that both the scaled measurement stand and the testing methodology conform to the ISO 10140 standards, and that the obtained measurement uncertainty does not exceed the maximum values specified in ISO 12999-1. Moreover, the calculated uncertainty of measurements obtained for the 1:8 scale stand is comparable with the typical uncertainty given in ISO 12999-1 and the uncertainty obtained on the full-scale measurement stand. In connection with the above, the authors have proved that by using the scaled-down measurement stands, one can obtain reliable and repeatable results of measurements of airborne sound insulation.


2000 ◽  
Vol 16 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Louis M. Hsu ◽  
Judy Hayman ◽  
Judith Koch ◽  
Debbie Mandell

Summary: In the United States' normative population for the WAIS-R, differences (Ds) between persons' verbal and performance IQs (VIQs and PIQs) tend to increase with an increase in full scale IQs (FSIQs). This suggests that norm-referenced interpretations of Ds should take FSIQs into account. Two new graphs are presented to facilitate this type of interpretation. One of these graphs estimates the mean of absolute values of D (called typical D) at each FSIQ level of the US normative population. The other graph estimates the absolute value of D that is exceeded only 5% of the time (called abnormal D) at each FSIQ level of this population. A graph for the identification of conventional “statistically significant Ds” (also called “reliable Ds”) is also presented. A reliable D is defined in the context of classical true score theory as an absolute D that is unlikely (p < .05) to be exceeded by a person whose true VIQ and PIQ are equal. As conventionally defined reliable Ds do not depend on the FSIQ. The graphs of typical and abnormal Ds are based on quadratic models of the relation of sizes of Ds to FSIQs. These models are generalizations of models described in Hsu (1996) . The new graphical method of identifying Abnormal Ds is compared to the conventional Payne-Jones method of identifying these Ds. Implications of the three juxtaposed graphs for the interpretation of VIQ-PIQ differences are discussed.


1996 ◽  
Vol 12 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Louis M. Hsu

The difference (D) between a person's Verbal IQ (VIQ) and Performance IQ (PIQ) has for some time been considered clinically meaningful ( Kaufman, 1976 , 1979 ; Matarazzo, 1990 , 1991 ; Matarazzo & Herman, 1985 ; Sattler, 1982 ; Wechsler, 1984 ). Particularly useful is information about the degree to which a difference (D) between scores is “abnormal” (i.e., deviant in a standardization group) as opposed to simply “reliable” (i.e., indicative of a true score difference) ( Mittenberg, Thompson, & Schwartz, 1991 ; Silverstein, 1981 ; Payne & Jones, 1957 ). Payne and Jones (1957) proposed a formula to identify “abnormal” differences, which has been used extensively in the literature, and which has generally yielded good approximations to empirically determined “abnormal” differences ( Silverstein, 1985 ; Matarazzo & Herman, 1985 ). However applications of this formula have not taken into account the dependence (demonstrated by Kaufman, 1976 , 1979 , and Matarazzo & Herman, 1985 ) of Ds on Full Scale IQs (FSIQs). This has led to overestimation of “abnormality” of Ds of high FSIQ children, and underestimation of “abnormality” of Ds of low FSIQ children. This article presents a formula for identification of abnormal WISC-R Ds, which overcomes these problems, by explicitly taking into account the dependence of Ds on FSIQs.


Sign in / Sign up

Export Citation Format

Share Document