engine stability
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Xiaoxi Zhang ◽  
Xiao Yu ◽  
Simon Leblanc ◽  
Ming Zheng ◽  
Jimi Tjong

Abstract Downsizing, turbocharging, and lean burn strategies offer improved fuel efficiency and engine-out emissions to that of conventional spark ignition engines. However, maintaining engine stability becomes difficult, especially at low load and low speed operation such as cold start conditions. Under cold start operation, the spark timing is retarded to rush catalyst warm-up temperature followed by advancing the spark timing for engine stability. In this sequence, securing ignition while using retarded spark timing is difficult because of the cold cylinder walls and low engine loads. Through previous investigations, the noval multiple ignition sites strategy demonstrated its capability to expend lean burn boundaries beyond traditional single core spark plug and improve cycle to cycle variation. In this work, multisite ignition is tested on a production 4-cylinder direct injection spark ignition engine. A large number of tests are performed on the engine to investigate the impact of ignition strategy on emissions and stability during catalytic converter warm up period as part of the cold-start operation. Results show that the three-core spark igniter shortens the ignition delay thus providing a wider stable spark timing window for stable engine operation. As a result, the concentration of unburnt fuel in the exhaust gas can be reduced before the catalyst reaches the light-off temperature.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1413
Author(s):  
Ruomiao Yang ◽  
Xiaoxia Sun ◽  
Zhentao Liu ◽  
Yu Zhang ◽  
Jiahong Fu

Increasingly stringent regulations to reduce vehicle emissions have made it important to study emission mitigation strategies. Highly accurate control of the air-fuel ratio is an effective way to reduce emissions. However, a less accurate sensor can lead to reduced engine stability and greater variability in engine efficiency and emissions. Additionally, internal combustion engines (ICE) are moving toward higher compression ratios to achieve higher thermal efficiency and alleviate the energy crisis. The objective of this investigation was to analyze the significance of the accuracy of air-fuel ratio measurements at different compression ratios. In this study, a calibrated 1D CFD model was used to analyze the performance and emissions at different compression ratios. The results showed that carbon monoxide (CO) and nitrogen oxides (NOx) were sensitive to the equivalence ratio regardless of the compression ratio. With a slight change in the equivalence ratio, a high compression ratio had little effect on the change in engine performance and emissions. Moreover, with the same air-fuel ratio, an excessively high compression ratio (CR = 12) might result in knocking phenomenon, which increases the fluctuation of the engine output parameters and reduces engine stability. Overall, for precise control of combustion and thermal efficiency improvement, it is recommended that the measurement accuracy of the equivalence ratio is higher than 1% and the recommended value of the compression ratio are roughly 11.


Author(s):  
Asad Asghar ◽  
William D. E. Allan ◽  
Marc LaViolette ◽  
Robert Stowe ◽  
Derrick Alexander ◽  
...  

This paper reports the internal performance evaluation of S-duct diffusers with different offset-to-length ratios. The geometric parameters of S-duct diffusers are currently of great interest because of increasing demand for stealth and consequently, their effects on drag and aero-engine stability margin. The generic S-duct diffuser selected as a baseline had a rectangular-entrance and circular exit. Test articles were tested with the high subsonic, Ma = 0.8 and 0.85, flow and were manufactured using 3D printing. stream-wise static pressure and exit-plane total pressure were measured in a test rig using surface pressure taps and a 5-probe rotating rake, respectively. The baseline and variant S-ducts were also simulated through computational fluid dynamics. The investigation indicated the presence of stream-wise and circumferential pressure gradients leading to a separated flow in the S-duct diffusers and distortion at the exit plane. The static pressure recovery decreased and total pressure loss increased with an increase in the offset-to-length ratio. The circumferential distortion at the engine face clearly indicated a trend with respect to the offset-to-length ratio, however radial distortion did not.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Nicola Casari ◽  
Michele Pinelli ◽  
Alessio Suman ◽  
Luca di Mare ◽  
Francesco Montomoli

Fouling and erosion are two pressing problems that severely affect gas turbine performance and life. When aircraft fly through a volcanic ash cloud, the two phenomena occur simultaneously in the cold as well as in the hot section of the engine. In the high-pressure turbine (HPT), in particular, particles soften or melt due to the high gas temperatures and stick to the wet surfaces. The throat area, and hence the capacity, of the HPT is modified by these phenomena, affecting the engine stability and possibly forcing engine shutdown. This work presents a model for deposition and erosion in gas turbines and its implementation in a three-dimensional Navier–Stokes solver. Both deposition and erosion are taken into account, together with deposit detachment due to changed flow conditions. The model is based on a statistical description of the behavior of softened particles. The particles can stick to the surface or can bounce away, eroding the material. The sticking prediction relies on the authors' Energy Based FOulinG (EBFOG) model. The impinging particles which do not stick to the surface are responsible for the removal of material. The model is demonstrated on a HPT vane. The airfoil shape evolution over the exposure time as a consequence of the impinging particles has been carefully monitored. The variation of the flow field as a consequence of the geometrical changes is reported as an important piece of on-board information for the flight crew.


Author(s):  
Nicola Casari ◽  
Michele Pinelli ◽  
Alessio Suman ◽  
Francesco Montomoli ◽  
Luca di Mare

Fouling and erosion are two pressing problems that severely affect gas turbine performance and life. When aircraft fly through a volcanic ash cloud the two phenomena occur simultaneously in the cold as well as in the hot section of the engine. In the high pressure turbine, in particular, the particles soften or melt due to the high gas temperatures and stick to the wet surfaces. The throat area, and hence the capacity, of the HP turbine is modified by these phenomena, affecting the engine stability and possibly forcing engine shutdown. This work presents a model for deposition and erosion in gas turbines and its implementation in a three dimensional Navier-Stokes solver. Both deposition and erosion are kept into account, together with deposit detachment due to changed flow conditions. The model is based on a statistical description of the behaviour of softened particles. The particles can stick to the surface or can bounce away, eroding the material. The sticking prediction relies on the authors’ EBFOG model. The impinging particles which do not stick to the surface are responsible for the removal of material. The model is demonstrated on a high pressure turbine vane. The performance deterioration and the throat area reduction rate are carefully monitored. The safe-to-fly time through a cloud can be inferred from the outcome of this work as important piece of on-board information for the flight crew.


Author(s):  
Kelvin Xie ◽  
Shui Yu ◽  
Tongyang Gao ◽  
Xiao Yu ◽  
Ming Zheng ◽  
...  

In order to meet the future carbon dioxide legislation, advanced clean combustion engines are tending to employ low temperature diluted combustion strategies along with intensified cylinder charge motion. The diluted mixtures are made by means of excess air admission or exhaust gas recirculation. A slower combustion speed during the early flame kernel development because of the suppressed mixture reactivity will reduce the reliability of the ignition process and the overall combustion stability. In an effort to address this issue, an ignition strategy using a multi-pole spark igniter is tested in this work. The igniter uses three electrically independent spark gaps to allow three spatially distributed spark discharge. The multi-pole spark strategy, when observed in an optical combustion vessel with lean methane-air mixtures, visually showed increased early flame kernel growth rate. The strategy was tested on an engine using gasoline fuel and low load, lean operation at 1.35 excess air ratio. The results indicated that the combustion phasing parameters were consistently advanced under the multi-pole spark strategy. In conditions where a conventional single spark exhibited stable operation, relatively little additional benefits were seen with the multi-pole strategy. At later spark timings when cycle-to-cycle variations had a greater impact on the engine stability, the multi-pole spark reduced the combustion variability.


Sign in / Sign up

Export Citation Format

Share Document