scholarly journals Validation of a 1:8 Scale Measurement Stand for Testing Airborne Sound Insulation

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6663
Author(s):  
Agata Szeląg ◽  
Katarzyna Baruch-Mazur ◽  
Krzysztof Brawata ◽  
Bartosz Przysucha ◽  
Dominik Mleczko

This paper contains a detailed description of the design and validation of a measurement stand for testing the airborne sound insulation of specimens made at a small scale. The stand is comprised of two coupled reverberation rooms in which the geometry represents the full-size reverberation rooms used at the AGH University of Science and Technology at a 1:8 scale. The paper proves that both the scaled measurement stand and the testing methodology conform to the ISO 10140 standards, and that the obtained measurement uncertainty does not exceed the maximum values specified in ISO 12999-1. Moreover, the calculated uncertainty of measurements obtained for the 1:8 scale stand is comparable with the typical uncertainty given in ISO 12999-1 and the uncertainty obtained on the full-scale measurement stand. In connection with the above, the authors have proved that by using the scaled-down measurement stands, one can obtain reliable and repeatable results of measurements of airborne sound insulation.

Author(s):  
D.M. Seyedi ◽  
C. Plúa ◽  
M. Vitel ◽  
G. Armand ◽  
J. Rutqvist ◽  
...  

2018 ◽  
Vol 432 ◽  
pp. 680-698 ◽  
Author(s):  
N.B. Roozen ◽  
Q. Leclère ◽  
D. Urbán ◽  
T. Méndez Echenagucia ◽  
P. Block ◽  
...  

2014 ◽  
Vol 633-634 ◽  
pp. 659-664 ◽  
Author(s):  
Zong Tao Fang ◽  
De Yu Tang ◽  
Yan Hua Hu ◽  
Hu Li Niu

This paper focus on fatigue problem of submarine pipelines, four points bending full scale fatigue experiment were conducted on X65 pipelines butt joints specimens, utilizing pipeline full scale fatigue test machine developed by CNPC. Meanwhile contrast test was also carried out on small specimens. The results show that the fatigue strength of full scale welded joints is lower than the small scale joints. Owing to having no regard for the influence of residual stress and size effect, the small test would provide dangerous results. The fatigue property of full scale welded joints only meets the requirement of DNV C203 W3 curve, and meets the needs of DNV C203 F3 curve basically while not meet BS 7608 F2 curve’s requirements which relatively demand higher. Weld toe and geometric discontinuous near weld root is the weak point for the whole welded joints.


2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


2021 ◽  
Author(s):  
S. J. van der Spuy ◽  
D. N. J. Els ◽  
L. Tieghi ◽  
G. Delibra ◽  
A. Corsini ◽  
...  

Abstract The MinWaterCSP project was defined with the aim of reducing the cooling system water consumption and auxiliary power consumption of concentrating solar power (CSP) plants. A full-scale, 24 ft (7.315 m) diameter model of the M-fan was subsequently installed in the Min WaterCSP cooling system test facility, located at Stellenbosch University. The test facility was equipped with an in-line torque arm and speed transducer to measure the power transferred to the fan rotor, as well as a set of rotating vane anemometers upstream of the fan rotor to measure the air volume flow rate passing through the fan. The measured results were compared to those obtained on the 1.542 m diameter ISO 5801 test facility using the fan scaling laws. The comparison showed that the fan power values correlated within +/− 7% to those of the small-scale fan, but at a 1° higher blade setting angle for the full-scale fan. To correlate the expected fan static pressure rise, a CFD analysis of the 24 ft (7.315 m) diameter fan installation was performed. The predicted fan static pressure rise values from the CFD analysis were compared to those measured on the 1.542 m ISO test facility, for the same fan. The simulation made use of an actuator disc model to represent the effect of the fan. The results showed that the predicted results for fan static pressure rise of the installed 24 ft (7.315 m) diameter fan correlated closely (smaller than 1% difference) to those of the 1.542 m diameter fan at its design flowrate but, once again, at approximately 1° higher blade setting angle.


Author(s):  
Halvor Lie ◽  
Henning Braaten ◽  
Jamison Szwalek ◽  
Massimiliano Russo ◽  
Rolf Baarholm

For deep-water riser systems, Vortex Induced Vibrations (VIV) may cause significant fatigue damage. It appears that the knowledge gap of this phenomenon is considerable and this has caused a high level of research activity over the last decades. Small scale model tests are often used to investigate VIV behaviour. However, one substantial uncertainty in applying such results is scaling effects, i.e. differences in VIV response in full scale flow and small scale flow. To (partly) overcome this obstacle, a new innovative VIV test rig was designed and built at MARINTEK to test a rigid full scale riser model. The rigid riser model is mounted vertically and can either be elastically mounted or be given a forced motion. In the present version, the cylinder can only move in the cross-flow (CF) direction and is restricted in the in-line (IL) direction. The paper reports results from a drilling riser VIV experiment where the new rest rig has been used. The overall objective of the work is to study possible VIV suppression to improve operability of retrievable riser systems with auxiliary lines by adding riser fins. These fins are normally used as devices for protection of the auxiliary lines. The test program has recently been completed and analysis is an on-going activity. However, some results can be reported at this stage and more results are planned to be published. A bare riser model was used in a Reynolds number (Rn) scaling effect study. The riser model was elastically mounted and towed over a reduced velocity range around 4 – 10 in two different Rn ranges, 75 000 – 192 000 (subcritical regime) and 347 000 – 553 000 (critical regime). The difference in the displacement amplitude to diameter ratio, A/D, is found to be significant. The elastically mounted riser was also towed with various drilling riser configurations in order to study VIV/galloping responses. One configuration included a slick joint riser model with 6 kill & choke lines; another has added riser fins too. The riser model is based on a specific drilling riser and the kill and choke lines have various diameters and have a non-symmetrical layout. The various riser configurations have also been used in forced motion tests where the towed model has been given a sinusoidal CF motion. Forces have been measured. Determination of the force coefficients is still in progress and is planned to be reported later. Scaling effects appear to be a significant uncertainty and further research on the subject is recommended. The slick joint drilling riser configuration generally increased the displacements compared to displacements of the bare riser model. The drilling riser configuration with protection fins, kill and choke lines generally reduced the displacements compared to displacements of the bare riser model. For both riser systems, tests showed that the response is sensitive to the heading of the current.


Author(s):  
Svein Sævik ◽  
Knut I. Ekeberg

Nexans Norway is, together with Marintek, currently developing a software for detailed analysis of complex umbilical cross-section designs. The software development project combines numerical methods with small-scale testing of involved materials, as well as full-scale testing of a wide variety of umbilical designs, essential for calibration and verification purposes. Each umbilical design is modelled and comparisons are made with respect to global behaviour in terms of: • Axial strain versus axial force; • Axial strain versus torsion; • Torsion versus torsion moment for various axial force levels; • Moment versus curvature for different tension levels. The applied theory is based on curved beam and curved axisymmetric thin shell theories. The problem is formulated in terms of finite elements applying the Principle of Virtual Displacements. Each body of the cross-section interacts with the other bodies by contact elements which are formulated by a penalty formulation. The contact elements operate in the local surface coordinate system and include eccentricity, surface stiffness and friction effects. The software is designed to include the following functionality: • Arbitrary geometry modelling including helical elements wound into arbitrary order; • The helical elements may include both tubes and filled bodies; • Elastic, hyper-elastic, and elastic-plastic material models; • Initial strain; • Contact elements, including friction; • Tension, torsion, internal pressure, external pressure, bending and external contact loading (caterpillars, tensioners, etc.). The paper focuses on the motivation behind the development program including a description of the different activities. The theory is described in terms of kinematics, material models and finite element formulation. A test example is further presented comparing predicted behaviour with respect to full-scale test results.


Sign in / Sign up

Export Citation Format

Share Document