Asymptotic Methods for Solving Wave Propagation Problems in Porous Tubes, Channels and Spheres

Author(s):  
Joe Majdalani
2010 ◽  
Vol 11 (1) ◽  
pp. 44-53 ◽  
Author(s):  
E. Masson ◽  
P. Combeau ◽  
Y. Cocheril ◽  
M. Berbineau ◽  
L. Aveneau ◽  
...  

2019 ◽  
Vol 219 (3) ◽  
pp. 1885-1899
Author(s):  
D W Vasco ◽  
Kurt T Nihei

SUMMARY We derive equations describing the path and traveltime of a coherent elastic wave propagating in an anisotropic medium, generalizing expressions from conventional high-frequency asymptotic ray theory. The methodology is valid across a broad range of frequencies and allows for subwavelength variations in the material properties of the medium. The primary difference from current ray methods is the retention of a term that is neglected in the derivation of the eikonal equation. The additional term contains spatial derivatives of the properties of the medium and of the amplitude field, and its presence couples the equations governing the evolution of the amplitude and phase along the trajectory. The magnitude of this term provides a measure of the validity of expressions based upon high-frequency asymptotic methods, such as the eikonal equation, when modelling wave propagation dominated by a band of frequencies. In calculations involving a layer with gradational boundaries, we find that asymptotic estimates do deviate from those of our frequency-dependent approach when the width of the layer boundaries become sufficiently narrow. For example, for a layer with boundaries that vary over tens of meters, the term neglected by a high-frequency asymptotic approximation is significant for frequencies around 10 Hz. The visible differences in the paths of the rays that traverse the layer substantiate this conclusion. For a velocity model derived from an observed well log, the majority of the trajectories calculated using the extended approach, accounting for the frequency-dependence of the rays, are noticeably different from those produced by the eikonal equation. A suite of paths from a source to a specified receiver, calculated for a range of frequencies between 10 and 100 Hz, define a region of sensitivity to velocity variations and may be used for an augmented form of tomographic imaging.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


Sign in / Sign up

Export Citation Format

Share Document