Low Reynolds Number Laminar Airfoil with Active Flow Control

Author(s):  
Michael Thake ◽  
Nathan Packard ◽  
Carlos Bonilla ◽  
Jeffrey Bons
Author(s):  
Julia Kurz ◽  
Martin Hoeger ◽  
Reinhard Niehuis

In this paper a design process of a highly loaded profile for a turbine exit case (TEC) application is described. The profile has an increased pitch to chord ratio which is approximately 50% higher compared to conventional airfoils. For the design of the airfoil a two-dimensional (2D) computational fluid dynamics (CFD) prediction method was used in addition to in-house design rules and low Reynolds number experience from previous experiments. Furthermore, common knowledge from turbine and compressor design as well as turbine exit guide vane studies was evaluated and taken as basis for the new design. To verify the highly loaded design, the profile was tested over a wide Reynolds number range in the high speed cascade wind tunnel of the Institute of Jet Propulsion (ISA) at the University of the German armed forces in Munich. The experiments showed a very good agreement between the CFD predictions and the measurements for high Reynolds numbers. In the low Reynolds number regime the tendency to massive flow separation was slightly underestimated by the CFD predictions. It is particularly challenging as the CFD predictions still have problems to calculate open separation bubbles. Active flow control (AFC) by fluidic oscillators was also part of the design process and successfully applied on the profile.


Author(s):  
Ehsan Asgari ◽  
Mehran Tadjfar

In this study, we have applied and compared two active flow control (AFC) mechanisms on a pitching NACA0012 airfoil at Reynolds number of 1 × 106 using 2-D computational fluid dynamics (CFD). These mechanisms are continuous blowing and suction which are applied separately on the airfoil which pitches around its quarter-chord in a sinusoidal motion. The location for suction and blowing was determined in our previous study based on the formation of a counter clock-wise vortex near the leading-edge. In our current study, we have compared the effectiveness of pure blowing and pure suction in suppressing the dynamic stall vortex (DSV) which is the main contributor to the drag increase, particularly near the maximum angle of attack (AOA) and in early downstroke motion. The blowing/suction slot is considered as a dent on the airfoil surface which enables the AFC to perform in a tangential manner. This configuration would allow blowing jet to penetrate further downstream and was shown to be more effective compared to a cross-flow orientation. We have compared the two aforementioned mechanisms in terms of hysteresis loops of lift and drag coefficients and have demonstrated the dynamics of flow in controlled and uncontrolled situations.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Mehran Tadjfar ◽  
Ehsan Asgari

We have studied the influence of a tangential blowing jet in dynamic stall of a NACA0012 airfoil at Reynolds number of 1 × 106, for active flow control (AFC) purposes. The airfoil was oscillating between angles of attack (AOA) of 5 and 25 deg about its quarter-chord with a sinusoidal motion. We have utilized computational fluid dynamics to investigate the impact of jet location and jet velocity ratio on the aerodynamic coefficients. We have placed the jet location upstream of the counter-clockwise (CCW) vortex which was formed during the upstroke motion near the leading-edge; we have also considered several other locations nearby to perform sensitivity analysis. Our results showed that placing the jet slot within a very small range upstream of the CCW vortex had tremendous effects on both lift and drag, such that maximum drag was reduced by 80%. There was another unique observation: placing the jet at separation point led to an inverse behavior of drag hysteresis curve in upstroke and downstroke motions. Drag in downstroke motion was significantly lower than upstroke motion, whereas in uncontrolled case the converse was true. Lift was significantly enhanced during both upstroke and downstroke motions. By investigating the pressure coefficients, it was found that flow control had altered the distribution of pressure over the airfoil upper surface. It caused a reduction in pressure difference between upper and lower surfaces in the rear part, while substantially increased pressure difference in the front part of the airfoil.


Author(s):  
T Rajesh Senthil Kumar ◽  
Mohini Priya Kolluri ◽  
V R Gopal Subramaniyan ◽  
A D Sripathi

Sign in / Sign up

Export Citation Format

Share Document