Ignition of Gelled Monomethylhydrazine and Red Fuming Nitric Acid in an Impinging Jet Apparatus

Author(s):  
Jacob Dennis ◽  
Timothee Pourpoint ◽  
Steven Son
2018 ◽  
Author(s):  
Harold Jeffrey M. Consigo ◽  
Ricardo S. Calanog ◽  
Melissa O. Caseria

Abstract Gallium Arsenide (GaAs) integrated circuits have become popular these days with superior speed/power products that permit the development of systems that otherwise would have made it impossible or impractical to construct using silicon semiconductors. However, failure analysis remains to be very challenging as GaAs material is easily dissolved when it is reacted with fuming nitric acid used during standard decapsulation process. By utilizing enhanced chemical decapsulation technique with mixture of fuming nitric acid and concentrated sulfuric acid at a low temperature backed with statistical analysis, successful plastic package decapsulation happens to be reproducible mainly for die level failure analysis purposes. The paper aims to develop a chemical decapsulation process with optimum parameters needed to successfully decapsulate plastic molded GaAs integrated circuits for die level failure analysis.


1980 ◽  
Vol 45 (7) ◽  
pp. 2120-2124 ◽  
Author(s):  
Gabriel Čík ◽  
Anton Blažej ◽  
Kamil Antoš ◽  
Igor Hrušovský

1,3-Bis(4-nitrophenyl)-1-butene was prepared by nitration of 1,3-diphenyl-1-butene (I) with fuming nitric acid in acetic acid. The double bond in I was protected by addition of bromine which was eliminated after the nitration. The UV, IR and 1H- spectra of the synthesized compounds are interpreted.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Nikolaos Chalmpes ◽  
Athanasios B. Bourlinos ◽  
Smita Talande ◽  
Aristides Bakandritsos ◽  
Dimitrios Moschovas ◽  
...  

In hypergolics two substances ignite spontaneously upon contact without external aid. Although the concept mostly applies to rocket fuels and propellants, it is only recently that hypergolics has been recognized from our group as a radically new methodology towards carbon materials synthesis. Comparatively to other preparative methods, hypergolics allows the rapid and spontaneous formation of carbon at ambient conditions in an exothermic manner (e.g., the method releases both carbon and energy at room temperature and atmospheric pressure). In an effort to further build upon the idea of hypergolic synthesis, herein we exploit a classic liquid rocket bipropellant composed of furfuryl alcohol and fuming nitric acid to prepare carbon nanosheets by simply mixing the two reagents at ambient conditions. Furfuryl alcohol served as the carbon source while fuming nitric acid as a strong oxidizer. On ignition the temperature is raised high enough to induce carbonization in a sort of in-situ pyrolytic process. Simultaneously, the released energy was directly converted into useful work, such as heating a liquid to boiling or placing Crookes radiometer into motion. Apart from its value as a new synthesis approach in materials science, carbon from rocket fuel additionally provides a practical way in processing rocket fuel waste or disposed rocket fuels.


Author(s):  
Joshua Hollingshead ◽  
Makayla L. Ianuzzi ◽  
Jeffrey D. Moore ◽  
Grant A. Risha

1968 ◽  
pp. 15-22 ◽  
Author(s):  
G. Meinel ◽  
A. Peterlin ◽  
K. Sakaoku

1956 ◽  
Vol 28 (3) ◽  
pp. 412-413 ◽  
Author(s):  
M. L. Moberg ◽  
W. P. Knight ◽  
H. M. Kindsvater

Sign in / Sign up

Export Citation Format

Share Document