Effect of Actuator Dynamics on Active Structural Control of Offshore Wind Turbines

Author(s):  
Gordon Stewart ◽  
Matthew Lackner
Author(s):  
Aabas Ahmad

Abstract: Offshore wind turbines have the potential to be an important part of the United States’ energy production profile in the coming years. In order to accomplish this wind integration, offshore wind turbines need to be made more reliable and cost efficient to be competitive with other sources of energy. To capitalize on high speed and highquality winds over deep water, floating platforms for offshore wind turbines have been developed, but they suffer from greatly increased loading. One method to reduce loadsin offshore wind turbines is the application of structural control techniques usuallyused in skyscrapers and bridges. Tuned mass dampers are one structural control system that have been used to reduce loads in simulations of offshore wind turbines. This thesis adds to the state of the art of offshore wind energy by developing a set of optimum passive tuned mass dampers for four offshore wind turbine platforms and byquantifying the effects of actuator dynamics on an active tuned mass damper design. The set of optimum tuned mass dampers are developed by creating a limited degree-of-freedom model for each of the four offshore wind platforms


2014 ◽  
Vol 1025-1026 ◽  
pp. 891-896 ◽  
Author(s):  
Er Ming He ◽  
Ya Qi Hu ◽  
Yang Zhang ◽  
Ge Liang Yin

The application of tuned mass dampers (TMDs) to offshore wind turbines has a huge potential to suppress the large vibration responses of these systems. Control module of TMDs is added into the wind turbine structural dynamics simulation code FAST and fully coupled aero-hydro-TMD-structural dynamics model of the 5MW Barge-type floating wind turbine by National Renewable Energy Laboratory (NREL) is established. A multi-parameter optimization study is performed to determine the optimal parameters of a fore-aft TMD system in the Barge-type model. The wind turbine model equipped with the optimal TMD is then simulated under five typical load conditions and the performance of the new system is evaluated. The results show that longitudinal loads at tower base and deflections at tower top reductions of up to 50% and longitudinal loads at blade root and deflections at blade tip reductions of up to 40% are achieved, which indicates that the optimal TMD can be used to suppress the vibration response of offshore wind turbines and also demonstrates the potential for TMD structural control approaches.


Wind Energy ◽  
2010 ◽  
Vol 14 (3) ◽  
pp. 373-388 ◽  
Author(s):  
Matthew A. Lackner ◽  
Mario A. Rotea

2014 ◽  
Vol 134 (8) ◽  
pp. 1096-1103 ◽  
Author(s):  
Sho Tsujimoto ◽  
Ségolène Dessort ◽  
Naoyuki Hara ◽  
Keiji Konishi

Sign in / Sign up

Export Citation Format

Share Document