An Efficient Coupled Fluid/Structure Finite Element Scheme for Blast and Impact Loads over Reinforced Concrete Structures

Author(s):  
Orlando Soto ◽  
Joseph Baum ◽  
Rainald Lohner
2001 ◽  
Vol 4 (2) ◽  
pp. 67-78 ◽  
Author(s):  
Ana Alonso ◽  
Anahí Dello Russo ◽  
César Otero-Souto ◽  
Claudio Padra ◽  
Rodolfo Rodríguez

2021 ◽  
Vol 385 ◽  
pp. 111541
Author(s):  
Guillaume Hervé-Secourgeon ◽  
Estelle Hervé-Secourgeon ◽  
Marina Bottoni ◽  
François Voldoire ◽  
Mihaja Razafimbelo ◽  
...  

2001 ◽  
Vol 7 (6) ◽  
pp. 419-424
Author(s):  
Arvydas Jurkša

The author has created a new technology for concrete beam, column, slab, wall and shell reinforcement computation according to the finite element program COSMOS/M analysis results and code of practice valid in Lithuania. A brief description of the technology is included in the article. Computer programmes COSARM and COSMAX were designed for slab, wall and shell reinforcement computation. Results can be visualized graphically. New computer programmes BEAM, COSBEAM, COLUMN, COSREC and COSCIR were created for beam and column reinforcement computation. The new technology extremely enlarged the possibilities of the powerful finite element program COSMOS/M and enabled to compute very complicated reinforced concrete structures.


2019 ◽  
Vol 104 ◽  
pp. 22-33
Author(s):  
Roberto Chaves Spoglianti de Souza ◽  
Marco Andreini ◽  
Saverio La Mendola ◽  
Jochen Zehfuß ◽  
Christian Knaust

2018 ◽  
Vol 199 ◽  
pp. 11010 ◽  
Author(s):  
Marcus Hering ◽  
Manfred Curbach

Textile reinforced concrete, especially textile reinforced concrete with carbon fibres, was already been used for strengthening steel reinforced concrete structures under static loads up to now. The question is if the composite can also be used for strengthening structures against impact loads. The main goal of a current research project at the Technische Universität Dresden is the development and characterization of a reinforcement fabric with optimized impact resistance. But there is a challenge. There is the need to find the best combination of fibre material (glass, carbon, steel, basalt, …) and reinforcement structure (short fibres, 2D-fabrics, 3D-fabrics, …), but testing the large number of possible combinations is not possible with the established methods. In general, large-scale tests are necessary which are very expensive and time consuming. Therefore, a new testing method has been developed to deal with this large number of possible combinations of material and structural experiments. The following paper describes this new testing method to find the best fabric reinforcement for strengthening reinforced concrete structures against impact loads. The testing devise, which is located in the drop tower facility at the Otto Mohr Laboratory, and the test set-up are illustrated and described. The measurement equipment and the methods to evaluate the experimental results are explained in detail.


Sign in / Sign up

Export Citation Format

Share Document