reinforcement structure
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 34)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
pp. 191-202
Author(s):  
A. P Yankovskii

The initial-boundary value problem of dynamic elastic-viscoplastic deformation of flexible curved panels (shallow shells) with plane -cross and spatial reinforcement structures is formulated. The inelastic behavior of the materials of the composition components is described by the constitutive equations of the theory of plastic flow with isotropic hardening, and their sensitivity to strain rate is taken into account. The geometric nonlinearity of the problem is taken into account in the Karman approximation. The used kinematic and dynamic two-dimensional relations and the corresponding boundary conditions make it possible to describe, with varying degrees of accuracy, the mechanical bending behavior of shallow composite shells. This takes into account the possible weak resistance of such reinforced panels to transverse shears. In the first approximation, the used two-dimensional equations, the initial and boundary conditions degenerate into the relations of the traditional non-classical Ambartsumyan theory. For the numerical integration of the formulated nonlinear dynamic problem, an algorithm of time steps is applied, based on the use of an explicit scheme of the cross type. The elastoplastic and elastic-viscoplastic behavior of the reinforced cylindrical shallow shells under transverse dynamic loads generated by an air blast wave is investigated. Metal-composite and fiberglass thin-walled constructions are considered. It is shown that the refusal to take into account the dependence of the plastic properties of the components of the composition on the rate of their deformation does not allow adequately describing the inelastic dynamic behavior of both metal-composite and fiberglass shallow shells. It is shown that in the calculations of even relatively thin reinforced cylindrical panels (with a relative thickness of 1/50), the use of the Ambartsumyan theory leads to completely unacceptable results in comparison with the refined bending theory. It has been demonstrated that even for relatively thin curved fiberglass panels, replacing the traditional flat -cross reinforcement structure with a spatial structure with obliquely laid fiber families can significantly reduce not only the intensity of deformations in the binder, but also the maximum deflection values in modulus. For metal-composite shallow shells with a weakly expressed anisotropy of the composition, the positive effect of the indicated replacement of reinforcement structures is practically not manifested.


2021 ◽  
Vol 5 (7 (113)) ◽  
pp. 52-58
Author(s):  
Anastasiia Stoliarova ◽  
Andriy Pozhuyev ◽  
Oksana Spytsia ◽  
Alla Bohuslavska

A method for determining effective elastic constants of a composite unidirectionally reinforced with two types of transtropic hollow fibers is developed. Determining these characteristics is an integral step in the design of composite structures. The approach is based on analytical formulas for determining the elastic characteristics of a two-component composite with a transtropic matrix and hollow fiber. Hexagonal fiber lay-up with periodic reinforcement structure is considered. Double homogenization is used. The composite is conventionally divided into hexagonal regions of two types. The first is a hollow fiber of one material and the surrounding matrix. Similarly, the second one – with a hollow fiber of another material. In the first homogenization, elastic constants of the transtropic material of each of the two regions are determined. In the repeated homogenization, the region of the first type is taken as a “conditional” fiber, the region of the second type is taken as a “conditional” matrix. Effective elastic constants for a composite reinforced with two types of isotropic hollow fibers are calculated. The proposed method gives a good convergence of the results with calculations by known formulas. The maximum relative calculation error for the longitudinal elastic characteristics compared to known formulas does not exceed 0.05 %. The dependences of some effective elastic constants on the volume content of hollow fibers of various types are constructed. Using this approach, three-component composites can be modeled varying the materials of the matrix, hollow fibers and their volume content. This allows predicting the strength of such composites under certain deformations at the design stage


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6079
Author(s):  
Eugen Constantin Ailenei ◽  
Savin Dorin Ionesi ◽  
Ionut Dulgheriu ◽  
Maria Carmen Loghin ◽  
Dorina Nicolina Isopescu ◽  
...  

The global demand for fiber-based products is continuously increasing. The increased consumption and fast fashion current in the global clothing market generate a significant quantity of pre-and post-production waste that ends up in landfills and incinerators. The present study aims to obtain a new waste-based composite material panel for construction applications with improved mechanical properties that can replace traditional wood-based oriented strand boards (OSB). The new composite material is formed by using textile wastes as a reinforcement structure and a combination of bi-oriented polypropylene films (BOPP) waste, polypropylene non-woven materials (TNT) waste and virgin polypropylene fibers (PP) as a matrix. The mechanical properties of waste-based composite materials are modeled using the Taguchi method based on orthogonal arrays to maximize the composite characteristics’ mechanical properties. Experimental data validated the theoretical results obtained.


2021 ◽  
Author(s):  
HIROKI KAWABE, ◽  
YUICHIRO AOKI ◽  
TOSHIYA NAKAMURA

The aim of this study is to establish a novel aircraft design approach replacing the conventional airframe by utilizing biomimetics. This design approach particularly focused on the dragonfly wing, whose reinforcement structures are composed of cross- veins and longitudinal veins. The cross-veins have been emulated by weighted Centroidal Voronoi Tessellation (WCVT) following the out-of-plane displacement on the skin, while the longitudinal veins have been emulated by extracting a centerline from the topology optimization result on the skin to be reinforced, through image analysis of binarization and skeletonization. The longitudinal layout can reduce the compliance distributing the inner load with only essential reinforcement on the skin without increasing the mass. The weighted CVT layout can improve the effectiveness of the reinforced skin against buckling drastically. Thus, the skin reinforced along the cross- longitudinal layout by the topology optimization and weighted CVT pattern increased buckling load 2.7 times higher even with less mass than the conventional layout.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Eryu Zhu ◽  
Bin Wang ◽  
Dongqi Wei ◽  
Li Zhu

To prevent the wooden door frame of traditional rural houses from being stuck due to diamond deformation under earthquake and improve the seismic capacity of rural houses, an innovative method of reinforcing the angular displacement of the wooden door frame with channel steel and the diagonal brace is proposed. The rationality of the finite element simulation is demonstrated by comparing the results of finite element simulation and quasistatic test based on reinforced and unreinforced wooden door frame specimens. On the basis of the finite element model of wooden door frame, the seismic performance of channel type and diagonal brace thickness of reinforced wooden door frame and the seismic performance of friction coefficient of unreinforced wooden door frame are studied, respectively. The results show that the lateral stiffness and the lateral bearing capacity of the reinforced wooden door frame increase with the increase of channel steel type and the diagonal brace thickness. The height of the channel steel section of the seismic reinforcement structure should be half of the unreinforced structure. With the increase of the friction coefficient, the lateral bearing capacity of the unreinforced wooden frame increases, while the ductility of the unreinforced wooden frame decreases.


Vestnik MGSU ◽  
2021 ◽  
pp. 1191-1216
Author(s):  
Alexander N. Polilov ◽  
Nikolay A. Tatus’

Introduction. The article is devoted an analytical overview of the methods of applying the Nature solutions for designing structures made of plastics reinforced with fibers, in particular, using rational curved fiber trajectories. The first section provides an overview of different structural models and some approaches to the micromechanics of composites. Materials and methods. Sections 2-7 discuss: analysis of rational elastic-strength properties of wood and composites for crack arrest by weak interface; methods for constructing curved paths of fibers of “flowing holes”; analyzes the applied and promising technologies for manufacturing attachment points, in which holes are formed using curvilinear fiber paths; “nature-inspired” principles of optimal design of pipe composite structures similar in structure to ladder of bamboo stalk; examples of the effective use of fibrous composites in elastic elements such as leaf springs; developing additive technologies for 3D printing of fiber composite parts with fiber laying along calculated trajectories. Results. Each section of the article presents conclusions related to the peculiarities of composites structures calculation and design: calculations show that in order to increase the crack resistance of fibrous composites, it is necessary to significantly increase the shear characteristics of the binder and strive for rational properties created by Nature in wood; as a result of the calculation, it turns out that the maximum stress per fiber at the optimal reinforcement structure becomes about 3–4 times less than with a uniform rectilinear laying; rational reinforcement leads to a significant reduction in local stresses per fiber, elimination of splits and damages of fibers and an increase in the carrying capacity of the assembly; it has been shown that the bamboo rings are arranged to prevent the barrel from splitting from bending compressive stresses and tangential stresses when the barrel is twisted by wind load; analyzed the relationship of equal-strength profiling with Leonardo’s rule for tree crown branching. The works on creation of bio-similar shape and structure of curvilinear reinforcement of specimens for correct determination of unidirectional composites strength at tension along fibres were discussed; analyzed the role of composite technologies in modern mechanical engineering, in particular, in the creation of composite structures in open space. Conclusions. The article is devoted to the analysis of the tasks of fibrous composites macromechanics, therefore, in the opinion of the authors, the three most promising and related areas in macromechanics of composites that require further research are biomechanics of strength, computer modeling of optimal structures and technological mechanics of composites.


2021 ◽  
Vol 416 ◽  
pp. 129094
Author(s):  
Chunyan Cao ◽  
Huilong Dong ◽  
Fanghua Liang ◽  
Yu Zhang ◽  
Wei Zhang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3047
Author(s):  
Kamil Czech ◽  
Rafał Oliwa ◽  
Dariusz Krajewski ◽  
Katarzyna Bulanda ◽  
Mariusz Oleksy ◽  
...  

Polymer fiber composites are increasingly being used in many industries, including the defense industry. However, for protective applications, in addition to high specific strength and stiffness, polymer composites are also required to have a high energy absorption capacity. To improve the performance of fiber-reinforced composites, many researchers have modified them using multiple methods, such as the introduction of nanofillers into the polymer matrix, the modification of fibers with nanofillers, the impregnation of fabrics using a shear thickening fluid (STF) or a shear thickening gel (STG), or a combination of these techniques. In addition, the physical structures of composites have been modified through reinforcement hybridization; the appropriate design of roving, weave, and cross-orientation of fabric layers; and the development of 3D structures. This review focuses on the effects of modifying composites on their impact energy absorption capacity and other mechanical properties. It highlights the technologies used and their effectiveness for the three main fiber types: glass, carbon, and aramid. In addition, basic design considerations related to fabric selection and orientation are indicated. Evaluation of the literature data showed that the highest energy absorption capacities are obtained by using an STF or STG and an appropriate fiber reinforcement structure, while modifications using nanomaterials allow other strength parameters to be improved, such as flexural strength, tensile strength, or shear strength.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Atsushi Matsumura ◽  
Tamaki Nakano ◽  
Shinji Ono ◽  
Akihiro Kaminaka ◽  
Hirofumi Yatani ◽  
...  

Abstract Background In dental implant treatment, the placement position of the implant body is important. The hypothesis is that there are factors that have a greater impact than the factors that have been studied so far. Material and Methods The deviation between planned and actually placed implants was measured three-dimensionally by modified treatment evaluation method in 110 patients who underwent implant placement with guided surgery for partial edentulism. Ten factors that seemed to affect errors in placement were selected: the type of tooth, type of edentulism, distance from the remaining teeth, the type of implant, implant length, number of implants, method of guidance, the number of teeth supporting the surgical guide, number of anchor pins, and presence or absence of a reinforcement structure. The effect of each factor that corrected each confounding was calculated using multivariate analysis. Results In this study, 188 implant bodies were set to target, and the errors measurement data of the implant position were as follows: average Angle, 2.5 ± 1.6° (95% CI 2.25–2.69); Base, 0.67 ± 0.37 mm (95% CI 0.62–0.72); and Apex, 0.92 ± 0.47 mm (95% CI 0.86–0.98). As the result of multivariate analysis, larger errors were present in the partially guided group than the fully guided group. The number of teeth supporting the surgical guide significantly influenced the error in placement position. The error caused by the number of anchor pins was significantly different for the Angle. Similarly, the presence of the reinforcement structure influenced the error significantly for the Angle. Conclusions It was suggested that the smaller errors could be present by performing guided surgery with full guidance and devising the design of the guide such as the number of teeth supporting the surgical guide, the setting of the anchor pin, and the reinforcement structure.


Sign in / Sign up

Export Citation Format

Share Document