Fabrication and Characterization of Small-scale Pneumatic Artificial Muscles for a Bio-Inspired Robotic Hand

Author(s):  
Erica Hocking ◽  
Norman Wereley
Author(s):  
Thomas E. Pillsbury ◽  
Ryan M. Robinson ◽  
Norman M. Wereley

Pneumatic artificial muscles (PAMs) are used in robotics applications for their light-weight design and superior static performance. Additional PAM benefits are high specific work, high force density, simple design, and long fatigue life. Previous use of PAMs in robotics research has focused on using “large,” full-scale PAMs as actuators. Large PAMs work well for applications with large working volumes that require high force and torque outputs, such as robotic arms. However, in the case of a compact robotic hand, a large number of degrees of freedom are required. A human hand has 35 muscles, so for similar functionality, a robot hand needs a similar number of actuators that must fit in a small volume. Therefore, using full scale PAMs to actuate a robot hand requires a large volume which for robotics and prosthetics applications is not feasible, and smaller actuators, such as miniature PAMs, must be used. In order to develop a miniature PAM capable of producing the forces and contractions needed in a robotic hand, different braid and bladder material combinations were characterized to determine the load stroke profiles. Through this characterization, miniature PAMs were shown to have comparably high force density with the benefit of reduced actuator volume when compared to full scale PAMs. Testing also showed that braid-bladder interactions have an important effect at this scale, which cannot be modeled sufficiently using existing methods without resorting to a higher-order constitutive relationship. Due to the model inaccuracies and the limited selection of commercially available materials at this scale, custom molded bladders were created. PAMs created with these thin, soft bladders exhibited greatly improved performance.


Author(s):  
Lena Johnson ◽  
Hugh A. Bruck ◽  
Satyandra K. Gupta

This paper describes the design, fabrication, testing and modeling of the SUR Hand. The SUR Hand is a soft, under actuated robotic hand. Through an iterative design and manufacturing process, SUR Hand’s soft, actuating components have been adapted from the original PneuFlex, pneumatically actuated finger to be highly flexible and capable of actuating a precision force. This paper shows how altering the design parameters of the fingers altered their overall performance. Furthermore, it details the experimental setup for testing the components, as well as the modeling methods used. Finally, it shows the process for creating and validating a geometric model that characterizes proper grasping strategies, assuming a passive palm component.


2012 ◽  
Vol 23 (3) ◽  
pp. 365-378 ◽  
Author(s):  
Robert D. Vocke ◽  
Curt S. Kothera ◽  
Anirban Chaudhuri ◽  
Benjamin K.S. Woods ◽  
Norman M. Wereley

Micro-air vehicle (MAV) development is moving toward smaller and more capable platforms to enable missions such as indoor reconnaissance. This miniaturization creates challenging constraints on volume and energy generation/storage for all systems onboard. Actuator technologies must also address these miniaturization goals. Much research has focused on active material systems, such as piezoelectric materials and synthetic jets, but these advanced technologies have specific, but limited, capability. Conventional servo technology has also encountered concerns over miniaturization. Motivation has thus been established to develop a small-scale actuation technology prototype based on pneumatic artificial muscles, which are known for their lightweight, high-output, and low-pressure operation. The miniature actuator provides bidirectional control capabilities for a range of angles, rates, and loading conditions. Problems addressed include the scaling of the pneumatic actuators and design of a mechanism to adjust the kinematic load-stroke profile to suit the pneumatic actuators. The kinematics of the actuation system was modeled, and a number of bench-top configurations were fabricated, assembled, and experimentally characterized. Angular deflection and angular rate output of the final bench-top prototype system are presented, showing an improvement over conventional servo motors used in similar applications, especially in static or low-frequency operation.


2008 ◽  
Vol 10 (9) ◽  
pp. 1381-1383 ◽  
Author(s):  
Toshiaki Yamaguchi ◽  
Sota Shimizu ◽  
Toshio Suzuki ◽  
Yoshinobu Fujishiro ◽  
Masanobu Awano

2019 ◽  
Vol 35 (4) ◽  
pp. 475-484
Author(s):  
SHIVA ARUN ◽  
◽  
PRABHA BHARTIYA ◽  
AMREEN NAZ ◽  
SUDHEER RAI ◽  
...  

2019 ◽  
Vol 139 (11) ◽  
pp. 375-380
Author(s):  
Harutoshi Takahashi ◽  
Yuta Namba ◽  
Takashi Abe ◽  
Masayuki Sohgawa

Sign in / Sign up

Export Citation Format

Share Document