Time-Resolved PSP Imaging of Unsteady Shock-Wave Phenomena Using a High-Speed Camera

Author(s):  
Daiju Numata ◽  
Keisuke Asai
Shock Waves ◽  
2005 ◽  
Vol 14 (5-6) ◽  
pp. 333-341 ◽  
Author(s):  
H. Kleine ◽  
K. Hiraki ◽  
H. Maruyama ◽  
T. Hayashida ◽  
J. Yonai ◽  
...  

2019 ◽  
Vol 18 (2-3) ◽  
pp. 279-298 ◽  
Author(s):  
Bhavraj Thethy ◽  
David Tairych ◽  
Daniel Edgington-Mitchell

Time-resolved visualisation of shock wave motion within a powered resonant tube (PRT) is presented for the regurgitant mode of operation. Shock position and velocity are measured as functions of both time and space from ultra-high-speed schlieren visualisations. The shock wave velocity is seen to vary across the resonator length for both the incident and reflected waves. Three mechanisms are explored as explanations for the variation in velocity: change in local fluid velocity, variation in shock strength and variations in local temperature. For the incident wave, local fluid velocity and shock strength are extracted from the data and both are demonstrated to contribute to the observed variation, with a non-trivial remainder likely explained by variation in temperature.


Author(s):  
Shengjun Zhou ◽  
Haiwang Li ◽  
Zhi Tao ◽  
Ruquan You ◽  
Haoyu Duan

In the current study, the influence of different rotation conditions on the flow behavior is experimentally investigated by a new system which is designed for time-resolved PIV measurements of the smooth channels at rotation conditions. The Reynolds number equals 15000 and the rotation number ranges from 0 to 0.392 with an interval of 0.098. This new time-resolved Particle Image Velocimetry system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode can provide a less than 1mm thickness sheet light. 6400 frames can be captured in one second by the high-speed camera. These two parts of the system are fixed on a rotating disk. In this case, the relative velocity of flows in the rotating smooth square channel can be measured directly to reduce the measurement error. This system makes high-speed camera close to the rotating channel, which allows a high resolution for the measurements of main stream. In addition, high accuracy and temporal resolution realize a detailed analysis of boundary layer characteristics in rotation conditions. Based on this system, experimental investigation has been undertaken. Results are presented of the evolution of velocity and boundary layer thickness at various rotation numbers and different circumferential positions.


Author(s):  
Toshiaki Watanabe ◽  
Hirofumi Iyama ◽  
Ayumi Takemoto ◽  
Shigeru Itoh

Adhesion problem of marine organisms often becomes a problem, in the case of ship, marine floating construction and sluice gate of power plant. These make fluid resistance of a hull increase, cause a buoyancy fall, or cause reducing coolant etc. Although these are chiefly removed by manual operation now, immense expense and immense labors, such as personnel expenses and time and effort, are needed. We tried application of an underwater shock wave, in order to solve these problems. Interference of a shock wave and the mechanism of marine organisms exfoliation were explored using the explosive and PMMA plate, which imitated a marine organisms adhesion. The process of exfoliation of organisms from PMMA plate was observed by using of the high-speed camera.


Author(s):  
Toshiaki Watanabe ◽  
Hironori Maehara ◽  
Masahiko Otsuka ◽  
Shigeru Itoh

The aim of study is to confirm a new technique that can crush the frozen soil and/or ice block using underwater shock wave generated by the underwater explosion of explosive. This technique can lead to the earlier sowing, which can have the larger harvest because the duration of sunshine increases. Especially, in Hokkaido prefecture, Japan, if the sowing is carried out in April, we can expect to have 150% of harvest in the ordinary season. This technique is effective against the cold regions. For example, Korea, China, Mongolia, Russia, Norway, and Sweden, etc. At first, we carried out experiments usung a detonating fuse and ice block. The process of ice breaking was observed by means of a high-speed camera. In order to check about that influence we tried to give an actual frozen soil a shock wave.


2011 ◽  
Vol 42 (4) ◽  
pp. 249-263 ◽  
Author(s):  
Hyun-Ha Kim ◽  
Jong-Ho Kim ◽  
Atsushi Ogata

2019 ◽  
Vol 89 (10) ◽  
pp. 1506
Author(s):  
П.П. Храмцов ◽  
В.А. Васецкий ◽  
В.М. Грищенко ◽  
М.В. Дорошко ◽  
М.Ю. Черник ◽  
...  

A new method of hypersonic flow generation is proposed and the results of an experimental study of hypersonic flow past cones with half-angles = 3° and = 12° are presented. The Mach numbers of the studied incident flows were = 18 ( = 3°) and = 14.4 ( = 12°). The use of a light-gas facility, where an accelerating channel was replaced with Laval nozzle, allows us to obtain a hypersonic outflow with optical density sufficiently high for flow visualization and diagnostics with the help of optical methods. The flow structure was visualized by means of the shadow method using the Foucault knife and the slit. Shadowgraphs were recorded by a high-speed camera with a frame rate of 300,000 fps and an exposure time of 1 µs. The Mach number for the incident flow was calculated from the inclination angle of the shock wave on shadowgraphs.


1999 ◽  
Author(s):  
Andrew J. Moore ◽  
Duncan P. Hand ◽  
James S. Barton ◽  
Julian D. C. Jones

Sign in / Sign up

Export Citation Format

Share Document