High-Speed Schlieren Imaging of a High-Speed Jet Impinging on a Flat Plate

Author(s):  
Jeffrey M. Diebold ◽  
Gregory S. Elliott
2022 ◽  
Author(s):  
Samantha A. Miller ◽  
Derek Mamrol ◽  
Joel J. Redmond ◽  
Karl Jantze ◽  
Carlo Scalo ◽  
...  

1996 ◽  
Vol 326 ◽  
pp. 1-36 ◽  
Author(s):  
FréDÉRic Ducros, Pierre Comte ◽  
Marcel Lesieur

It is well known that subgrid models such as Smagorinsky's cannot be used for the spatially growing simulation of the transition to turbulence of flat-plate boundary layers, unless large-amplitude perturbations are introduced at the upstream boundary: they are over-dissipative, and the flow simulated remains laminar. This is also the case for the structure-function model (SF) of Métais & Lesieur (1992). In the present paper we present a sequel to this model, the filtered-structure-function (FSF) model. It consists of removing the large-scale fluctuations of the field before computing its second-order structure function. Analytical arguments confirm the superiority of the FSF model over the SF model for large-eddy simulations of weakly unstable transitional flows. The FSF model is therefore used for the simulation of a quasi-incompressible (M∞ = 0.5) boundary layer developing spatially over an adiabatic flat plate, with a low level of upstream forcing. With the minimal resolution 650 × 32 × 20 grid points covering a range of streamwise Reynolds numbers Rex1 ε [3.4 × 105, 1.1 × 106], transition is obtained for 80 hours of time-processing on a CRAY 2 (whereas DNS of the whole transition takes about ten times longer). Statistics of the LES are found to be in acceptable agreement with experiments and empirical laws, in the laminar, transitional and turbulent parts of the domain. The dynamics of low-pressure and high-vorticity distributions is examined during transition, with particular emphasis on the neighbourhood of the critical layer (defined here as the height of the fluid travelling at a speed equal to the phase speed of the incoming Tollmien–Schlichting waves). Evidence is given that a subharmonic-type secondary instability grows, followed by a purely spanwise (i.e. time-independent) mode which yields peak-and-valley splitting and transition to turbulence. In the turbulent region, flow visualizations and local instantaneous profiles are provided. They confirm the presence of low- and high-speed streaks at the wall, weak hairpins stretched by the flow and bursting events. It is found that most of the vorticity is produced in the spanwise direction, at the wall, below the high-speed streaks. Isosurfaces of eddy viscosity confirm that the FSF model does not perturb transition much, and acts mostly in the vicinity of the hairpins.


1966 ◽  
Vol 88 (1) ◽  
pp. 132-136 ◽  
Author(s):  
D. K. Ai

A nonlinear theory for the calculation of the flow field of an oblique flat plate under blockage condition is given using the techniques of integral equations. Numerical results are obtained with the aid of a high-speed digital computer for the plate situated midchannel at values of the angle of attack from 10 to 90 deg and the channel width-chord ratio from 3 to 20. Although the theory is developed for arbitrary plate location, the midchannel case is of great interest due to the fact that most of the tests are performed at this position.


2012 ◽  
Vol 698 ◽  
pp. 211-234 ◽  
Author(s):  
Jens H. M. Fransson ◽  
Alessandro Talamelli

AbstractA study on the generation and development of high-amplitude steady streamwise streaks in a flat-plate boundary layer is presented. High-amplitude streamwise streaks are naturally present in many bypass transition scenarios, where they play a fundamental role in the breakdown to turbulence process. On the other hand, recent experiments and numerical simulations have shown that stable laminar streamwise streaks of alternating low and high speed are also capable of stabilizing the growth of Tollmien–Schlichting waves as well as localized disturbances and to delay transition. The larger the streak amplitude is, for a prescribed spanwise periodicity of the streaks, the stronger is the stabilizing mechanism. Previous experiments have shown that streaks of amplitudes up to 12 % of the free stream velocity can be generated by means of cylindrical roughness elements. Here we explore the possibility of generating streaks of much larger amplitude by using a row of miniature vortex generators (MVGs) similar to those used in the past to delay or even prevent boundary layer separation. In particular, we present a boundary layer experiment where streak amplitudes exceeding 30 % have been produced without having any secondary instability acting on them. Furthermore, the associated drag with the streaky base flow is quantified, and it is demonstrated that the streaks can be reinforced by placing a second array of MVGs downstream of the first one. In this way it is possible to make the control more persistent in the downstream direction. It must be pointed out that the use of MVGs opens also the possibility to set up a control method that acts twofold in the sense that both transition and separation are delayed or even prevented.


2013 ◽  
Vol 448-453 ◽  
pp. 3316-3319
Author(s):  
Chuang Sun ◽  
Yang Zhao ◽  
De Fu Li ◽  
Qing Ai ◽  
Xin Lin Xia

According to the view of heat transfer, the process of the fluid flow with high temperature and high speed over a flat plate may be considered as the heat transfer process within a compressible thermal boundary layer. Based on the numerical results of thermal isolation assumption, combining the temperature comparison with modification method, a coupled method of convection heat transfer coefficient with temperature field of the plate is established, and the characteristics of the thermal response for the flat plate is dominated. Take some ribbed plates as instances, the convection heat transfer coefficient and temperature field of the plate are simulated through the provided coupled method. The results show that, not only the position and materials of the plate influence the convection heat transfer coefficient, but also the time.


2013 ◽  
Vol 737 ◽  
pp. 19-55 ◽  
Author(s):  
O. R. Tutty ◽  
G. T. Roberts ◽  
P. H. Schuricht

AbstractInterference heating effects generated by a blunt fin-type protuberance on a flat plate exposed to a hypersonic flow have been investigated experimentally and numerically. Experiments and simulations were carried out at a free-stream Mach number of 6.7 under laminar flow conditions. The surface heating on the plate was measured experimentally using liquid-crystal thermography, which provided quantitative data with high spatial resolution. Complementary surface oil flow and schlieren experiments were also carried out to gain a better understanding of the interference flow field. The effects of fin leading-edge diameter on the heating distribution on the flat plate surface were explored. The results of the experiments and simulations agree well and reveal a highly complex interaction region which extends over seven diameters upstream of the fin. Within the interaction region surrounding the fin, heating enhancements up to ten times the undisturbed flat plate value were estimated from the experimental data. However, the liquid crystals have a limited range, and the numerical simulations indicated localized peak heating many times this value both on the plate and the fin itself.


1985 ◽  
Vol 154 ◽  
pp. 163-185 ◽  
Author(s):  
Ching-Mao Hung ◽  
Pieter G. Buning

The Reynolds-averaged Navier–Stokes equations are solved numerically for supersonic flow over a blunt fin mounted on a flat plate. The fin shock causes the boundary layer to separate, which results in a complicated, three-dimensional shock-wave and boundary-layer interaction. The computed results are in good agreement with the mean static pressure measured on the fin and the flat plate. The main features, such as peak pressure on the fin leading edge and a double peak on the plate, are predicted well. The role of the horseshoe vortex is discussed. This vortex leads to the development of high-speed flow and, hence, low-pressure regions on the fin and the plate. Different thicknesses of the incoming boundary layer have been studied. Varying the thicknesses by an order of magnitude shows that the size of the horseshoe vortex and, therefore, the spatial extent of the interaction are dominated by inviscid flow and only weakly dependent on the Reynolds number. Coloured graphics are used to show details of the interaction flow field.


Sign in / Sign up

Export Citation Format

Share Document