Large-Scale Compliance-Minimization and Buckling Topology Optimization of the Undeformed Common Research Model Wing

Author(s):  
Ting Wei Chin ◽  
Graeme Kennedy
2021 ◽  
Vol 157-158 ◽  
pp. 103006
Author(s):  
David Herrero-Pérez ◽  
Pedro J. Martínez Castejón

Author(s):  
James M. Gibert ◽  
Georges M. Fadel

This paper provides two separate methodologies for implementing the Voronoi Cell Finite Element Method (VCFEM) in topological optimization. Both exploit two characteristics of VCFEM. The first approach utilizes the property that a hole or inclusion can be placed in the element: the design variables for the topology optimization are sizes of the hole. In the second approach, we note that VCFEM may mesh the design domain as n sided polygons. We restrict our attention to hexagonal meshes of the domain while applying Solid Isotropic Material Penalization (SIMP) material model. Researchers have shown that hexagonal meshes are not subject to the checker boarding problem commonly associated with standard linear quad and triangle elements. We present several examples to illustrate the efficacy of the methods in compliance minimization as well as discuss the advantages and disadvantages of each method.


Author(s):  
Mads Baandrup ◽  
Ole Sigmund ◽  
Niels Aage

<p>This work applies a ultra large scale topology optimization method to study the optimal structure of bridge girders in cable supported bridges.</p><p>The current classic orthotropic box girder designs are limited in further development and optimiza­ tion, and suffer from substantial fatigue issues. A great disadvantage of the orthotropic girder is the loads being carried one direction at a time, thus creating stress hot spots and fatigue problems. Hence, a new design concept has the potential to solve many of the limitations in the current state­ of-the-art.</p><p>We present a design method based on ultra large scale topology optimization. The highly detailed structures and fine mesh-discretization permitted by ultra large scale topology optimization reveal new design features and previously unseen eff ects. The results demonstrate the potential of gener­ ating completely different design solutions for bridge girders in cable supported bridges, which dif­ fer significantly from the classic orthotropic box girders.</p><p>The overall goal of the presented work is to identify new and innovative, but at the same time con­ structible and economically reasonable, solutions tobe implemented into the design of future cable supported bridges.</p>


2021 ◽  
Author(s):  
ManyPrimates ◽  
Alba Motes Rodrigo ◽  
Charlotte Canteloup ◽  
Sonja J. Ebel ◽  
Christopher I Petkov ◽  
...  

Traditionally, primate cognition research has been conducted by independent teams on small populations of a few species. Such limited variation and small sample sizes pose problems that prevent us from reconstructing the evolutionary history of primate cognition. In this chapter, we discuss how large-scale collaboration, a research model successfully implemented in other fields, makes it possible to obtain the large and diverse datasets needed to conduct robust comparative analysis of primate cognitive abilities. We discuss the advantages and challenges of large-scale collaborations and argue for the need for more open science practices in the field. We describe these collaborative projects in psychology and primatology and introduce ManyPrimates as the first, successful collaboration that has established an infrastructure for large-scale, inclusive research in primate cognition. Considering examples of large-scale collaborations both in primatology and psychology, we conclude that this type of research model is feasible and has the potential to address otherwise unattainable questions in primate cognition.


2021 ◽  
Author(s):  
Sicheng Sun ◽  
Jaal Ghandhi ◽  
Xiaoping Qian

2021 ◽  
pp. 1-15
Author(s):  
Yuqing Zhou ◽  
Tsuyoshi Nomura ◽  
Enpei Zhao ◽  
Kazuhiro Saitou

Abstract Variable-axial fiber-reinforced composites allow for local customization of fiber orientation and thicknesses. Despite their significant potential for performance improvement over the conventional multiaxial composites and metals, they pose challenges in design optimization due to the vastly increased design freedom in material orientations. This paper presents an anisotropic topology optimization method for designing large-scale, 3D variable-axial lightweight composite structures subject to multiple load cases. The computational challenges associated with large-scale 3D anisotropic topology optimization with extremely low volume fraction are addressed by a tensor-based representation of 3D orientation that would avoid the 2π periodicity of angular representations such as Euler angles, and an adaptive meshing scheme, which, in conjunction with PDE regularization of the density variables, refines the mesh where structural members appear and coarsens where there is void. The proposed method is applied to designing a heavy-duty drone frame subject to complex multi-loading conditions. Finally, the manufacturability gaps between the optimized design and the fabrication-ready design for Tailored Fiber Placement (TFP) is discussed, which motivates future work toward a fully-automated design synthesis.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhaohua Wang ◽  
Chenglong Yang ◽  
Xiaopeng Xu ◽  
Dezhuang Song ◽  
Fenghe Wu

As the main load-bearing structure of heavy machine tools, cranes, and other high-end equipment, the large-scale box structures usually bear moving loads, and the results of direct topology optimization usually have some problems: the load transfer skeleton is difficult to identify and all working conditions are difficult to consider comprehensively. In this paper, a layout design method of stiffened plates for the large-scale box structures under moving loads based on multiworking-condition topology optimization is proposed. Based on the equivalent principle of force, the box structures are simplified into the main bending functional section, main torsional functional section, and auxiliary functional section by the magnitude of loads and moments, which can reduce the structural dimension and complexity in topology optimization. Then, the moving loads are simplified to some multiple position loads, and the comprehensive evaluation function is constructed by the compromise programming method. The mathematical model of multiworking-condition topology optimization is established to optimize the functional sections. Taking a crossbeam of superheavy turning and milling machining center as an example, optimization results show that the stiffness and strength of the crossbeam are increased by 17.39% and 19.9%, respectively, while the weight is reduced by 12.57%. It shows that the method proposed in this paper has better practicability and effectiveness for large-scale box structures.


Author(s):  
Yuqing Zhou ◽  
Tsuyoshi Nomura ◽  
Enpei Zhao ◽  
Wei Zhang ◽  
Kazuhiro Saitou

Abstract Variable-axial fiber-reinforced composites allow for local customization of fiber orientation and thicknesses. Despite their significant potential for performance improvement over the conventional multiaxial composites and metals, they pose challenges in design optimization due to the vastly increased design freedom in material orientations. This paper presents an anisotropic topology optimization (TO) method for designing large-scale, 3D variable-axial composite structures. The computational challenge for large-scale 3D TO with extremely low volume fraction is addressed by a tensor-based representation of 3D orientation that would avoid the 2π periodicity of angular representation such as Eular angles, and an adaptive meshing scheme, which, in conjunction with PDE regularization of the density variables, refines the mesh where structural members appear and coarsens where there is void. The proposed method is applied to designing a heavy-duty drone frame subject to complex multi-loading conditions. Finally, the manufacturability gaps between the optimized design and the fabrication-ready design for Tailored Fiber Placement (TFP) is discussed, which motivates future work toward fully-automated design synthesis.


Sign in / Sign up

Export Citation Format

Share Document