High Fidelity Simulations of Primary Breakup and Vaporization of Liquid Jet in Cross Flow (JICF)

Author(s):  
Luis G. Bravo ◽  
Dokyun Kim ◽  
Frank Ham ◽  
Kevin A. Kerner
Author(s):  
Feng Xiao ◽  
Mehriar Dianat ◽  
James J. McGuirk

A robust two-phase flow LES methodology is described, validated and applied to simulate primary breakup of a liquid jet injected into an airstream in either co-flow or cross-flow configuration. A Coupled Level Set and Volume of Fluid method is implemented for accurate capture of interface dynamics. Based on the local Level Set value, fluid density and viscosity fields are treated discontinuously across the interface. In order to cope with high density ratio, an extrapolated liquid velocity field is created and used for discretisation in the vicinity of the interface. Simulations of liquid jets discharged into higher speed airstreams with non-turbulent boundary conditions reveals the presence of regular surface waves. In practical configurations, both air and liquid flows are, however, likely to be turbulent. To account for inflowing turbulent eddies on the liquid jet interface primary breakup requires a methodology for creating physically correlated unsteady LES boundary conditions, which match experimental data as far as possible. The Rescaling/Recycling Method is implemented here to generate realistic turbulent inflows. It is found that liquid rather than gaseous eddies determine the initial interface shape, and the downstream turbulent liquid jet disintegrates much more chaotically than the non-turbulent one. When appropriate turbulent inflows are specified, the liquid jet behaviour in both co-flow and cross-flow configurations is correctly predicted by the current LES methodology, demonstrating its robustness and accuracy in dealing with high liquid/gas density ratio two-phase systems.


Author(s):  
Muthuselvan Govindaraj ◽  
Muralidhara Halebidu Suryanarayanarao ◽  
Prateekkumar Kotegar ◽  
Sonali Gupta ◽  
Sanjay Shankar ◽  
...  

The main objective of this computational analysis is to investigate the effect of increase in Weber number at constant momentum flux ratio on the primary breakup process and deformation of kerosene jet in cross stream air flow. Unsteady computational analysis with VOF approach is carried out to simulate the two phase flow at three different cross flow Weber number conditions (150, 350 and 400) at constant momentum flux ratio of 17. Since the results of VOF technique is highly sensitive to the size and distribution of grid, grid optimization process is carried out, with both structured and unstructured forms of the grid. Since the structured grid with number of elements 17,96,181 displayed better matching with experimental results of upper trajectory of kerosene jet; this grid is used to investigate the effect of turbulence model and Weber number on the windward trajectory of kerosene jet in cross flow air stream. Initially to evaluate the results of computational analysis; simulations are carried out with larger computational domain (with number of elements 17,96,181). Windward trajectory of computational analysis is compared with experimental results of upper trajectory predicted using image processing technique and reasonable overall matching is observed. To investigate the primary breakup process and deformation of liquid jet at three different increasing Weber number conditions, simulations are carried out with smaller computational domain with higher mesh density with number of elements 33,96,146. The computational technique used in the present analysis exactly captures the modes of breakup observed from experimental results at different Weber number operating conditions. To characterize the deformation of liquid jet at different Weber number conditions; near-field trajectory, cross stream dimension and wave length of liquid jet are quantified at different instants of time. With increase in Weber number, decrease in penetration of liquid jet along transverse direction and more bending of liquid jet along flow direction is observed. From the velocity profile along transverse direction of three different conditions, stronger shearing of liquid film is observed in higher Weber number conditions.


Author(s):  
Baris A. Sen ◽  
Yanhu Guo ◽  
Randal G. McKinney ◽  
Federico Montanari ◽  
Frederick C. Bedford

This paper summarizes work conducted at Pratt & Whitney to incorporate ANSYS Fluent into the computational fluid dynamics-based combustor design process. As a first step, turbulence, combustion and spray models that already exist and have been validated in the Pratt & Whitney legacy computational fluid dynamics (CFD) solver ALLSTAR were converted into user defined functions (UDFs) for usage with the core ANSYS Fluent solver. In this manner, a baseline solver was established that allowed a systematic testing of the ANSYS Fluent native models. The baseline solver was validated against computational results as well as experimental data obtained for (i) liquid jet in cross-flow (LJICF), (ii) ambient spray injector tests and (iii) Pratt & Whitney next generation product family configurations. These test cases established a thorough evaluation of ANSYS Fluent with UDFs on a spectrum of simple to complex geometries and flow physics relevant to the conditions encountered in aeroengine combustors. Results show that Fluent produces calculated results obtained by ALLSTAR with similar level of agreement to the experiments. Furthermore, Fluent provides better convergence compared to the legacy ALLSTAR solver with a similar computational resource requirement. The ANSYS Fluent native spray break-up models were also tested for the liquid jet in cross flow configuration, demonstrating the importance of modeling the stripping and primary break-up regime of a spray jet. This capability is currently available only via the use of UDFs.


Author(s):  
Jayanth Sekar ◽  
Arvind Rao ◽  
Sreedhar Pillutla ◽  
Allen Danis ◽  
Shih-Yang Hsieh

All key combustor performance & operability characteristics like emissions, exit profile, durability, LBO etc. have a dependence on spray quality. Hence it is important to accurately predict spray characteristics for accurate combustor modeling. In this paper, a CFD based liquid jet in cross flow spray modeling approach adopted at GE Aviation is presented. Liquid jet in cross flow is a complex phenomenon that broadly involves jet trajectory evolution, surface breakup, column fracture and dispersion of secondary droplet particles. A two-phase steady state Volume of Fluid (VOF) approach is used to predict the liquid jet trajectory. A combination of output from VOF and empirical correlations (Sallam et. al; Oda et. al) is used to predict droplet distribution that includes diameter, velocity components and mass flow rate. Surface breakup is modeled by injecting droplets along the leeward surface of the liquid jet with spanwise perturbation to capture the transverse spread. Jet column breakup is modeled by injecting droplets including effects of unsteady fluctuations empirically to mimic the column fracture behavior. Discrete particles are then transported in a lagrangian frame coupled with secondary breakup of droplets. This approach has been validated on a benchmark quality dataset with an average SMD (Sauter Mean Diameter) error of ∼6 microns and is being used on Gas Turbine combustor fuel-air mixing devices employing liquid jet in cross flow atomizers.


Sign in / Sign up

Export Citation Format

Share Document