Volume 4B: Combustion, Fuels and Emissions
Latest Publications


TOTAL DOCUMENTS

64
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791845691

Author(s):  
Nagaraja S. Rudrapatna ◽  
Richard R. Bohman ◽  
Jonathan K. Anderson ◽  
Rudolph Dudebout ◽  
Richard Hausen

Jet fuel flowing through the fuel injector is atomized and then mixed with high temperature compressed air flowing through the swirler to create a combustible mixture inside a gas turbine combustor. Individual geometric and flow features are carefully tuned at a component level to deliver optimum combustion performance. In a critical interface such as the fuel injector and swirler, manufacturing tolerances not only have an impact on combustor performance and operability but also on durability, as the relative position of the fuel injector to the swirler significantly impacts the swirler temperature. This paper studies the influence of manufacturing tolerances on component assembly and the resulting impact on swirler temperature. The oxidation damage mechanism of the swirler is used as a measure to assess swirler durability. A Pareto chart of the effect of manufacturing tolerances on metal temperature is used to highlight the key influencing parameters. Probability distribution associated with manufacturing tolerances is gathered with Monte Carlo simulation to guide the design.


Author(s):  
Michael Aguilar ◽  
Michael Malanoski ◽  
Gautham Adhitya ◽  
Benjamin Emerson ◽  
Vishal Acharya ◽  
...  

This paper describes an experimental investigation of a transversely forced, swirl stabilized combustor. Its objective is to compare the unsteady flow structures in single and triple nozzle combustors and determine how well a single nozzle configuration emulates the characteristics of a multi-nozzle one. The experiment consists of a series of velocity field measurements captured on planes normal to the jet axis. As expected, there are differences between the single and triple-nozzle flow fields, but the differences are not large in the regions upstream of the jet merging zone. Direct comparisons of the time averaged flow fields reveal a higher degree of non-axisymmetry for the flowfields of nozzles in a multi-nozzle configuration. Azimuthal decompositions of the velocity fields show that the transverse acoustic forcing has an important influence on the dynamics, but that the single and multi-nozzle configurations have similar forced response dynamics near the dump plane. Specifically, the axial dependence of the amplitude in the highest energy axisymmetric and helical flow structures is quite similar in the two configurations. This result suggests that the hydrodynamic influence of one swirling jet on the other is minimal and, as such, that jet-jet interactions in this configuration do not have a significant influence on the unsteady flow structures.


Author(s):  
Vishal Acharya ◽  
Timothy Lieuwen

Flow oscillations associated with hydrodynamic instabilities comprise a key element of the feedback loop during self-excited combustion driven oscillations. This work is motivated in particular by the question of how to scale thermoacoustic stability results from single nozzle or sector combustors to full scale systems. Specifically, this paper considers the response of non-axisymmetric flames to helical flow disturbances of the form u^i′∝expimθ where m denotes the helical mode number. This work closely follows prior studies of the response of axisymmetric flames to helical disturbances. In that case, helical modes induce strong flame wrinkling, but only the axisymmetric, m = 0 mode, leads to fluctuations in overall flame surface area and, therefore, heat release. All other helical modes induce local area/heat release fluctuations with azimuthal phase variations that cancel each other out when integrated over all azimuthal angles. However, in the case of mean flame non-axisymmetries, the azimuthal deviations on the mean flame surface inhibit such cancellations and the asymmetric helical modes (m ≠ 0) cause a finite global flame response. In this paper, a theoretical framework for non-axisymmetric flames is developed and used to illustrate how the flame shape influences which helical modes lead to net flame surface area fluctuations. Example results are presented which illustrate the contributions made by these asymmetric helical modes to the global flame response and how this varies with different control parameters such as degree of asymmetry in the mean flame shape or Strouhal number. Thus, significantly different sensitivities may be observed in single and multi-nozzle flames in otherwise identical hardware in flows with strong helical disturbances, if there are significant deviations in time averaged flame shape between the two, particularly if one of the cases is nearly axisymmetric.


Author(s):  
Joseph Meadows ◽  
Ajay K. Agrawal

Combustion noise and thermo-acoustic instabilities are of primary importance in highly critical applications such as rocket propulsion systems, power generation, and jet propulsion engines. Mechanisms for combustion instabilities are extremely complex because they often involve interactions among several different physical phenomena such as unsteady flame propagation leading to unsteady flow field, acoustic wave propagation, natural and forced hydrodynamic instabilities, etc. In the past, we have utilized porous inert media (PIM) to mitigate combustion noise and thermo-acoustic instabilities in both lean premixed (LPM) and lean direct injection (LDI) combustion systems. While these studies demonstrated the efficacy of the PIM concept to mitigate noise and thermo-acoustic instabilities, the actual mechanisms involved have not been understood. The present study utilizes time-resolved particle image velocimetry to measure the turbulent flow field in a non-reacting swirl-stabilized combustor without and with PIM. Although the flow field inside the annulus of the PIM cannot be observed, measurements immediately downstream of the PIM provide insight into the turbulent structures. Results are analyzed using the Proper Orthogonal Decomposition (POD) method and show that the PIM alters the flow field in an advantageous manner by modifying the turbulence structures and eliminating the corner recirculation zones and precessing vortex core, which would ultimately affect the acoustic behavior in a favorable manner.


Author(s):  
Andrea Donini ◽  
Robert J. M. Bastiaans ◽  
Jeroen A. van Oijen ◽  
L. Philip H. de Goey

CFD predictions of flame position, stability and emissions are essential in order to obtain optimized combustor designs in a cost efficient way. However, the numerical modeling of practical combustion systems is a very challenging task. As a matter of fact, the use of detailed reaction mechanisms is necessary for such reliable predictions. Unfortunately, the modeling of the full detail of practical combustion equipment is currently prohibited by the limitations in computing power, given the large number of species and reactions involved. The Flamelet-Generated Manifold (FGM) method reduces these computational costs by several orders of magnitude without loosing too much accuracy. Hereby FGM enables the application of reliable chemistry mechanisms in CFD simulations of combustion processes. In the present paper a computational analysis of partially premixed non-adiabatic flames is presented. In this scope, chemistry is reduced by the use of the FGM method. In the FGM technique the progress of the flame is generally described by a few control variables. For each control variable a transport equation is solved during run-time. The flamelet system is computed in a pre-processing stage, and a manifold with all the information about combustion is stored in a tabulated form. This research applies the FGM chemistry reduction method to describe partially premixed flames in combination with heat loss, which is a relevant condition for stationary gas turbine combustors. In order to take this into account, in the present implementation the reaction evolution is described by the reaction progress variable, the heat loss is described by the enthalpy and the local equivalence ratio effect on the reaction is represented by the mixture fraction. A series of test simulations is performed for a two dimensional geometry, characterized by a distinctive stratified methane/air inlet, and compared with detailed chemistry simulations. The results indicate that detailed simulations are reproduced in an excellent way with FGM.


Author(s):  
Vineeth Nair ◽  
R. I. Sujith

The dynamic transitions preceding combustion instability and lean blowout were investigated experimentally in a laboratory scale turbulent combustor by systematically varying the flow Reynolds number. We observe that the onset of combustion-driven oscillations is always presaged by intermittent bursts of high-amplitude periodic oscillations that appear in a near random fashion amidst regions of aperiodic, low-amplitude fluctuations. The onset of high-amplitude, combustion-driven oscillations in turbulent combustors thus corresponds to a transition in dynamics from chaos to limit cycle oscillations through a state characterized as intermittency in dynamical systems theory. These excursions to periodic oscillations become last longer in time as operating conditions approach instability and finally the system transitions completely into periodic oscillations. Such intermittent oscillations emerge through the establishment of homoclinic orbits in the phase space of the global system which is composed of hydrodynamic and acoustic subsystems that operate over different time scales. Such intermittent burst oscillations are also observed in the combustor on increasing the Reynolds number further past conditions of combustion instability towards the lean blowout limit. High-speed flame images reveal that the intermittent states observed prior to lean blowout correspond to aperiodic detachment of the flame from the bluff-body lip. These intermittent oscillations are thus of prognostic value and can be utilized to provide early warning signals to combustion instability as well as lean blowout.


Author(s):  
Alessandro Innocenti ◽  
Antonio Andreini ◽  
Andrea Giusti ◽  
Bruno Facchini ◽  
Matteo Cerutti ◽  
...  

In the present paper a numerical analysis of a low NOx partially premixed burner for industrial gas turbine applications is presented. The first part of the work is focused on the study of the premixing process inside the burner. Standard RANS CFD approach was used: k–ε turbulence model was modified and calibrated in order to find a configuration able to fit available experimental profiles of fuel/air concentration at the exit of the burner. The resulting profiles at different test points have been used to perform reactive simulations of an experimental test rig, where exhaust NOx emissions were measured. An assessment of the turbulent combustion model was carried out with a critical investigation of the expected turbulent combustion regimes in the system and taking into account the partially premixed nature of the flame due to the presence of diffusion type pilot flames. A reliable numerical setup was discovered by comparing predicted and measured NOx emissions at different operating conditions and at different split ratio between main and pilot fuel. In the investigated range, the influence of the premixer in the NOx formation rate was found to be marginal if compared with the pilot flame one. The calibrated numerical setup was then employed to explore possible modifications to fuel injection criteria and fuel split, with the aim of minimizing exhaust NOx emissions. This preliminary numerical screening of alternative fuel injection strategies allowed to define a set of advanced configurations to be investigated in future experimental tests.


Author(s):  
Usman Allauddin ◽  
Roman Keppeler ◽  
Michael Pfitzner

With increasing computational power, Large Eddy Simulation (LES) is being widely used to study and develop a better understanding of turbulent combustion. A variety of subgrid combustion models have been proposed to investigate premixed combustion in LES. One of the physical aspects that can be exploited, are the fractal characteristics of premixed flames which have been confirmed in several experimental works. In this work the performance of a simplified version of an already established sub-grid flame surface density combustion model, which is based on the fractal characteristics of the flame surface is investigated. The original model was derived on the basis of theoretical models, experimental and direct numerical simulations databases and its performance was validated with data from the available literature. The simplifications to the established flame surface density model are discussed, and its performance is validated in comparison to the original model. Secondly numerical simulations with both models at conditions typical for spark-ignition engines and industrial gas turbines are validated against experimental data. It is found that both original and simplified models are suitable for LES of low to high turbulent premixed combustion in ambient and elevated pressure conditions.


Author(s):  
Emilien Varea ◽  
Stephan Kruse ◽  
Heinz Pitsch ◽  
Thivaharan Albin ◽  
Dirk Abel

MILD combustion (Moderate or Intense Low Oxygen Dilution) is a well known technique that can substantially reduce high temperature regions in burners and thereby reduce thermal NOx emissions. This technology has been successfully applied to conventional furnace systems and seems to be an auspicious concept for reducing NOx and CO emissions in stationary gas turbines. To achieve a flameless combustion regime, fast mixing of recirculated burnt gases with fresh air and fuel in the combustion chamber is needed. In the present study, the combustor concept is based on the reverse flow configuration with two concentrically arranged nozzles for fuel and air injections. The present work deals with the active control of MILD combustion for gas turbine applications. For this purpose, a new concept of air flow rate pulsation is introduced. The pulsating unit offers the possibility to vary the inlet pressure conditions with a high degree of freedom: amplitude, frequency and waveform. The influence of air flow pulsation on MILD combustion is analyzed in terms of NOx and CO emissions. Results under atmospheric pressure show a drastic decrease of NOx emissions, up to 55%, when the pulsating unit is active. CO emissions are maintained at a very low level so that flame extinction is not observed. To get more insights into the effects of pulsation on combustion characteristics, velocity fields in cold flow conditions are investigated. Results show a large radial transfer of flow when pulsation is activated, hence enhancing the mixing process. The flame behavior is analyzed by using OH* chemiluminescence. Images show a larger distributed reaction region over the combustion chamber for pulsation conditions, confirming the hypothesis of a better mixing between fresh and burnt gases.


Author(s):  
Cheon Hyeon Cho ◽  
Chae Hoon Sohn ◽  
Ju Hyeong Cho ◽  
Han Seok Kim

Flame interaction between neighboring burners in a gas turbine combustor is investigated numerically for pursuit of its effect on NOx emission from the burners. In a model chamber or liner, EV burners with double cone are installed. Two burners with the same rotating direction of air stream are adopted and the distance between them is variable from 74.2 mm to 222.6 mm by the step size of 37.1 mm. Gaseous methane and air are adopted as fuel and oxidizer, respectively. From steady-state numerical analyses, flow, temperature, and NO concentration fields are calculated in all computational cases to find their correlation with NOx formation. NOx emission is evaluated at the exit of the model chamber with two burners as a function of burner distance and compared with that from a single burner. In all cases of two-burner calculations, NOx emission is higher than that of a single burner, which results from flow interactions between neighboring burners as well as between a burner and a liner wall. NOx emission is affected significantly by flow and flame interactions between them and strongly depends on burner distance. Burner interaction is divided into two regimes of a burner-burner interaction and a burner-wall interaction depending on the distance. In the former regime, NOx emission is reduced as flame interaction between burners is enhanced and in the latter regime, it is also reduced as interaction between the burner and the liner wall is enhanced.


Sign in / Sign up

Export Citation Format

Share Document