Large Eddy simulation of a spray jet flame using filtered tabulated chemistry

2019 ◽  
Author(s):  
Adrien Chatelier ◽  
Vincent R. Moureau ◽  
Nicolas Bertier ◽  
Benoit Fiorina
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Rohit Kulkarni ◽  
Wolfgang Polifke

The potential of a progress variable formulation for predicting autoignition and subsequent kernel development in a nonpremixed jet flame is explored in the LES (Large Eddy Simulation) context. The chemistry is tabulated as a function of mixture fraction and a composite progress variable, which is defined as a combination of an intermediate and a product species. Transport equations are solved for mixture fraction and progress variable. The filtered mean source term for the progress variable is closed using a probability density function of presumed shape for the mixture fraction. Subgrid fluctuations of the progress variable conditioned on the mixture fraction are neglected. A diluted hydrogen jet issuing into a turbulent coflow of preheated air is chosen as a test case. The model predicts ignition lengths and subsequent kernel growth in good agreement with experiment without any adjustment of model parameters. The autoignition length predicted by the model depends noticeably on the chemical mechanism which the tabulated chemistry is based on. Compared to models using detailed chemistry, significant reduction in computational costs can be realized with the progress variable formulation.


Author(s):  
Chaoyang Liu ◽  
Ning Wang ◽  
Kai Yang ◽  
Dongpeng Jia ◽  
Yu Pan

2021 ◽  
pp. 111730
Author(s):  
J. Benajes ◽  
J.M. García-Oliver ◽  
J.M. Pastor ◽  
I. Olmeda ◽  
A. Both ◽  
...  

Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 65 ◽  
Author(s):  
Arne Heinrich ◽  
Guido Kuenne ◽  
Sebastian Ganter ◽  
Christian Hasse ◽  
Johannes Janicka

Combustion will play a major part in fulfilling the world’s energy demand in the next 20 years. Therefore, it is necessary to understand the fundamentals of the flame–wall interaction (FWI), which takes place in internal combustion engines or gas turbines. The FWI can increase heat losses, increase pollutant formations and lowers efficiencies. In this work, a Large Eddy Simulation combined with a tabulated chemistry approach is used to investigate the transient near wall behavior of a turbulent premixed stoichiometric methane flame. This sidewall quenching configuration is based on an experimental burner with non-homogeneous turbulence and an actively cooled wall. The burner was used in a previous study for validation purposes. The transient behavior of the movement of the flame tip is analyzed by categorizing it into three different scenarios: an upstream, a downstream and a jump-like upstream movement. The distributions of the wall heat flux, the quenching distance or the detachment of the maximum heat flux and the quenching point are strongly dependent on this movement. The highest heat fluxes appear mostly at the jump-like movement because the flame behaves locally like a head-on quenching flame.


Fuel ◽  
2015 ◽  
Vol 142 ◽  
pp. 152-163 ◽  
Author(s):  
Masaya Muto ◽  
Hiroaki Watanabe ◽  
Ryoichi Kurose ◽  
Satoru Komori ◽  
Saravanan Balusamy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document