CFD Analysis of Aerodynamic Characteristics of Low Reynold’s Number High Lift Airfoils FX 63-137 and Selig S1223 by deploying Gurney Flaps.

ASCEND 2020 ◽  
2020 ◽  
Author(s):  
Absar A. Khan ◽  
Wasif Mirza Saeed
2015 ◽  
Vol 46 (7) ◽  
pp. 619-629
Author(s):  
Albert Vasilievich Petrov ◽  
Vladimir Fedorovich Tretyakov

2002 ◽  
Vol 39 (4) ◽  
pp. 662-667 ◽  
Author(s):  
Anutosh Moitra

2012 ◽  
Vol 260-261 ◽  
pp. 125-129
Author(s):  
Xin Zi Tang ◽  
Xu Zhang ◽  
Rui Tao Peng ◽  
Xiong Wei Liu

High lift and low drag are desirable for wind turbine blade airfoils. The performance of a high lift airfoil at high Reynolds number (Re) for large wind turbine blades is different from that at low Re number for small wind turbine blades. This paper investigates the performance of a high lift airfoil DU93-W-210 at high Re number in low Re number flows through wind tunnel testing. A series of low speed wind tunnel tests were conducted in a subsonic low turbulence closed return wind tunnel at the Re number from 2×105to 5×105. The results show that the maximum lift, minimum drag and stall angle differ at different Re numbers. Prior to the onset of stall, the lift coefficient increases linearly and the slope of the lift coefficient curve is larger at a higher Re number, the drag coefficient goes up gradually as angle of attack increases for these low Re numbers, meanwhile the stall angle moves from 14° to 12° while the Re number changes from 2×105to 5×105.


2015 ◽  
Vol 2015.68 (0) ◽  
pp. 167-168 ◽  
Author(s):  
Takahiro MAKIZONO ◽  
Gaku SASAKI ◽  
Hiroshi OCHI ◽  
Takaaki MATSUMOTO ◽  
Koichi YONEMOTO

Sign in / Sign up

Export Citation Format

Share Document