420 Aerodynamic Characteristics and Flow Field of High Lift-to-drag Ratio Airfoils in Low Reynolds Number

2015 ◽  
Vol 2015.68 (0) ◽  
pp. 167-168 ◽  
Author(s):  
Takahiro MAKIZONO ◽  
Gaku SASAKI ◽  
Hiroshi OCHI ◽  
Takaaki MATSUMOTO ◽  
Koichi YONEMOTO
2014 ◽  
Vol 2014.67 (0) ◽  
pp. _807-1_-_807-2_
Author(s):  
Shintaro SHIGEOKA ◽  
Gaku SASAKI ◽  
Takaaki MATSUMOTO ◽  
Koichi YONEMOTO

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaohua Zou ◽  
Mingsheng Ling ◽  
Wenzheng Zhai

With the development of flight technology, the need for stable aerodynamic and vibration performance of the aircraft in the civil and military fields has gradually increased. In this case, the requirements for aerodynamic and vibration characteristics of the aircraft have also been strengthened. The existing four-rotor aircraft carries limited airborne equipment and payload, while the current eight-rotor aircraft adopts a plane layout. The size of the propeller is generally fixed, including the load capacity. The upper and lower tower layout analyzed in this paper can effectively solve the problems of insufficient four-axis load and unstable aerodynamic and vibration performance of the existing eight-axis aircraft. This paper takes the miniature octorotor as the research object and studies the aerodynamic characteristics of the miniature octorotor at different low Reynolds numbers, different air pressures and thicknesses, and the lift coefficient and lift-to-drag ratio, as well as the vibration under different elastic moduli and air pressure characteristics. The research algorithm adopted in this paper is the numerical method of fluid-solid cohesion and the control equation of flow field analysis. The research results show that, with the increase in the Reynolds number within a certain range, the aerodynamic characteristics of the miniature octorotor gradually become better. When the elastic modulus is 2.5 E, the aircraft’s specific performance is that the lift increases, the critical angle of attack increases, the drag decreases, the lift-to-drag ratio increases significantly, and the angle of attack decreases. However, the transition position of the flow around the airfoil surface is getting closer to the leading edge, and its state is more likely to transition from laminar flow to turbulent flow. When the unidirectional carbon fiber-reinforced thickness is 0.2 mm and the thin arc-shaped airfoil with the convex structure has a uniform thickness of 2.5% and a uniform curvature of 4.5%, the aerodynamic and vibration characteristics of the octorotor aircraft are most beneficial to flight.


2013 ◽  
Vol 393 ◽  
pp. 366-371
Author(s):  
C.F. Mat Taib ◽  
Abdul Aziz Jaafar ◽  
Salmiah Kasolang

The study on the effect of winglet shape in wing design has been a focus of many researchers. Nevertheless, the effect of cant angle on the wing performances at low Reynolds number has not been fully explored. This paper describes the effect of a single semi-circular shaped winglet attached with a rectangular wing model to lower the drag without increasing the span of the wing. Aerodynamic characteristics for the rectangular wing (NACA 65-3-218) with and without semi-circular winglets have been studied using STAR CCM+ 4.0. This numerical analysis is based on Finite Volume Approach. Simulations were carried out on the rectangular wing model with and without winglet at aspect ratio of 2.73 and Reynolds number of 0.16 x 10 6 for various angles of attack. From the numerical analysis, wing performance characteristics in terms of lift coefficient CL, drag coefficient CD, and lift-to-drag ratio, CL/CD were obtained. It was found that the addition of a semi-circular winglet has resulted in a larger lift curve slope and higher Lift-to-Drag ratio in comparison with the case of a wing without winglet. Further investigation has revealed that a wing with semi-circular winglet with cant angle of 45 degree has produced the best Lift-to-Drag ratio, CL/CD.


2018 ◽  
Vol 123 (1259) ◽  
pp. 20-38
Author(s):  
E. J. Avital ◽  
T. Korakianitis ◽  
F. Motallebi

ABSTRACTLow Reynolds number blade profiles of ReC=105–2×105 as based on the chord length and used for small unnamed air vehicles, and near space applications are investigated for single and counter-rotating (co-axial) proprotors, i.e. acting as rotors or propellers. Such profiles are prone for early stall, significantly reducing their maximum lift to drag ratio. Two profiles previously designed by our continuous surface curvature design approach named as CIRCLE are investigated in order to improve the performance of the proprotors. The profiles are redesigns of the common symmetric NACA0012 and asymmetric E387 profiles. Using general arguments based on composite efficiency and rotor’s lift to drag ratio, the performance envelope is noticeably increased when using the redesigned profiles for high angles of attack due to stall delay.A new approach is derived to account for the distance between the rotors of a co-axial proprotor. It is coupled with a blade element method and is verified against experimental results. Single and co-axial CIRCLE-based proprotors are investigated against the corresponding non-CIRCLE-based proprotors at hover and axial translation. Noticeable improvements are observed in thrust increase and power reduction at high angles of attack of the blade’s profiles, particularly for the co-axial configuration. Plots of thrust, torque, power, composite efficiency and aerodynamic efficiency distributions are given and analysed.


Author(s):  
Yang Zhang ◽  
Zhou Zhou ◽  
Xu Li

Based on the complex flow field of vertical takeoff and landing (VTOL) aircraft with distributed propulsion, the influence of the turbulence intensity and gradient of turbulence intensity on the aerodynamic characteristics of two-dimensional airfoil under low Reynolds number was studied by solving the unsteady Reynolds averaged Navier-Stokes (URANS) Equation based on the c-type structural mesh and γ-Reθt transition model. The aerodynamic characteristics of NACA0012 airfoil at different turbulence intensities and Reynolds numbers are simulated and compared with the experimental data, which verifies the reliability of the low Reynolds number calculation method. Meanwhile, the effects of the different low Reynolds number and gradient of turbulence intensity on the aero-dynamic characteristics of airfoil are studied, and the effect mechanism of the turbulence on the flow field around airfoil is analyzed. It shows that the flow characteristics of the airfoil with high turbulence or Reynolds number are more stable, the separation bubble size is smaller, the flow separation is delayed, and the stall angle of attack is larger, but the effect of the two mechanisms on the earlier transition is different. The influence of the turbulence gradient on the airfoil is limited by the Reynolds number, and the flow separation, transition and reattachment of the airfoil with high turbulence gradient are advance. The generation and evolution of the laminar separation bubble are closely related to the turbulence intensity and Reynolds number, and its scale and location also affect the aerodynamic characteristics of the airfoil.


Author(s):  
Hauke Ehlers ◽  
Robert Konrath ◽  
Marcel Börner ◽  
Ralf Wokoeck ◽  
Rolf Radespiel

Author(s):  
J.-S. Liu ◽  
M. L. Celestina ◽  
G. B. Heitland ◽  
D. B. Bush ◽  
M. L. Mansour ◽  
...  

As an aircraft engine operates from sea level take-off (SLTO) to altitude cruise, the low pressure (LP) turbine Reynolds number decreases. As Reynolds number is reduced the condition of the airfoil boundary layer shifts from bypass transition to separated flow transition. This can result in a significant loss. The LP turbine performance fall-off from SLTO to altitude cruise, due to the loss increase with reduction in Reynolds number, is referred to as a lapse rate. A considerable amount of research in recent years has been focused on understanding and reducing the loss associated with the low Reynolds number operation. A recent 3-1/2 stage LP turbine design completed a component rig test program at Honeywell. The turbine rig test included Reynolds number variation from SLTO to altitude cruise conditions. While the rig test provides detailed inlet and exit condition measurements, the individual blade row effects are not available. Multi-blade row computational fluid dynamics (CFD) analysis is used to complement the rig data by providing detailed flow field information through each blade row. A multi-blade row APNASA model was developed and solutions were obtained at the SLTO and altitude cruise rig conditions. The APNASA model predicts the SLTO to altitude lapse rate within 0.2 point compared to the rig data. The global agreement verifies the modeling approach and provides a high confidence level in the blade row flow field predictions. Additional Reynolds number investigation with APNASA will provide guidance in the LP turbine Reynolds number research areas to reduce lapse rate. To accurately predict the low Reynolds number flow in the LP turbine is a challenging task for any computational fluid dynamic (CFD) code. The purpose of this study is to evaluate the capability of a CFD code, APNASA, to predict the sensitivity of the Reynolds number in LP turbines.


Sign in / Sign up

Export Citation Format

Share Document