Neural Network Flow Prediction for a Complex Supersonic Rectangular Nozzle

2021 ◽  
Author(s):  
Seth Kelly ◽  
Tyler Vartabedian ◽  
Emma D. Gist ◽  
Mark N. Glauser
Author(s):  
Jiaman Ma ◽  
Jeffrey Chan ◽  
Sutharshan Rajasegarar ◽  
Goce Ristanoski ◽  
Christopher Leckie

Author(s):  
Shuai Wu ◽  
Richard Burton ◽  
Zongxia Jiao ◽  
Juntao Yu ◽  
Rongjie Kang

This paper considers the feasibility of a new type of voice coil motor direct drive flow control servo valve. The proposed servo valve controls the flow rate using only a direct measurement of the spool position. A neural network is used to estimate the flow rate based on the spool position, velocity and coil current. The estimated flow rate is fed back to a closed loop controller. The feasibility of the concept is established using simulation techniques only at this point. All results are validated by computer co-simulation using AMESim and Simulink. A simulated model of a VCM-DDV (Voice Coil Motor-Direct Drive Valve) and hydraulic test circuit are built in an AMESim environment. A virtual digital controller is developed in a Simulink environment in which the feedback signals are received from the AMESim model; the controller outputs are sent to the VCM-DDV model in AMESim (by interfacing between these two simulation packages). A LQR (Linear Quadratic Regulator) state feedback and nonlinear compensator controller for spool position tracking is considered as this is the first step for flow control. A flow rate control loop is subsequently included via a neural network flow rate estimator. Simulation results show that this method could control the flow rate to an acceptable degree of precision, but only at low frequencies. This kind of valve can find usage in open loop hydraulic velocity control in many industrial applications.


2021 ◽  
Author(s):  
Hao Huang ◽  
Yaoyu Ma ◽  
Mengxian Chen ◽  
Enjie Zhang ◽  
Linghong Jiang ◽  
...  

2012 ◽  
Vol 605-607 ◽  
pp. 2366-2369 ◽  
Author(s):  
Yao Wang ◽  
Dan Zheng ◽  
Shi Min Luo ◽  
Dong Ming Zhan ◽  
Peng Nie

Based on analyzing the principle of BP neural network and time sequence characteristics of railway passenger flow, the forecast model of railway short-term passenger flow based on BP neural network was established. This paper mainly researches on fluctuation characteristics and short-time forecast of holiday passenger flow. Through analysis of passenger flow and then be used in passenger flow forecasting in order to guide the transport organization program especially the train plan of extra passenger train. And the result shows the forecast model based on BP neural network has a good effect on railway passenger flow prediction.


Sign in / Sign up

Export Citation Format

Share Document