LES investigation of real-fluid effect on underexpanded jets

Author(s):  
Yichao Jin ◽  
Wei Yao
1968 ◽  
Vol 15 (6) ◽  
pp. 1153-1157 ◽  
Author(s):  
Yu. P. Finat'ev ◽  
L. A. Shcherbakov ◽  
N. M. Gorskaya

2001 ◽  
Vol 105 (1043) ◽  
pp. 9-16 ◽  
Author(s):  
S. B. Verma ◽  
E. Rathakrishnan

Abstract The shock-structure and the related acoustic field of underexpanded jets undergoes significant changes as the Mach number Mj is increased. The present investigation is carried out to study the effect of Mach number on an underexpanded 2:1 elliptic-slot jet. Experimental data are presented for fully expanded Mach numbers ranging from 1.3 to 2.0. It is observed that the ‘cross-over’ point at the end of the first cell at low Mach numbers gets replaced by a normal shock at a highly underexpanded condition resulting in the formation of a ‘barrel’ shock along the minor-axis side with a ‘bulb’ shock formed along the major-axis side. The above change in shock structure is accompanied by a related change in the acoustic field. The amplitude of fundamental frequency along the minor-axis side grows with Mj but falls beyond Mj = 1.75. Along the major-axis side, however, the fundamental frequency does not exist at low Mach numbers. It appears at Mj = 1.75 but then falls at Mj = 2.0. The related azimuthal directivity of overall noise levels (OASPL) shows significant changes with Mj.


2012 ◽  
Vol 04 (02) ◽  
pp. 1250014 ◽  
Author(s):  
LI CAI ◽  
JUN ZHOU ◽  
FENGQI ZHOU ◽  
WENXIAN XIE ◽  
YUFENG NIE

In this paper, we present an extended ghost fluid method (GFM) for computations of liquid sloshing in incompressible multifluids consisting of inviscid and viscous regions. That is, the sloshing interface between inviscid and viscous fluids is tracked by the zero contour of a level set function and the appropriate sloshing interface conditions are captured by defining ghost fluids that have the velocities and pressure of the real fluid at each point while fixing the density and the kinematic viscosity of the other fluid. Meanwhile, a second order single-fluid solver, the central-weighted-essentially-nonoscillatory(CWENO)-type central-upwind scheme, is developed from our previous works. The high resolution and the nonoscillatory quality of the scheme can be verified by solving several numerical experiments. Nonlinear sloshing inside a pitching partially filled rectangular tank with/without baffles has been investigated.


Author(s):  
K-H Lee ◽  
T Setoguchi ◽  
S Matsuo ◽  
H-D Kim

The present study addresses experimental investigations of the near-field flow structures of an underexpanded sonic, dual, coaxial, swirl jet. The swirl stream is discharged from the secondary annular nozzle and the primary inner nozzle provides the underexpanded free jets. The interactions between the secondary swirl and primary underexpanded jets are quantified by a fine pitot impact and static pressure measurements and are visualized using a shadowgraph optical method. The pressure ratios of the secondary swirl and primary underexpanded jets are varied below 7.0. Experiments are conducted to investigate the effects of the secondary swirl stream on the primary underexpanded jets, compared with the secondary stream of no swirl. The results show that the presence of an annular swirl stream causes the Mach disc to move further downstream, with an increased diameter, and remarkably reduces the fluctuations of the impact pressures in the underexpanded sonic dual coaxial jet, compared with the case of the secondary annular stream with no swirl.


2013 ◽  
Vol 44 ◽  
pp. 140-154 ◽  
Author(s):  
Jingzhou Yu ◽  
Ville Vuorinen ◽  
Ossi Kaario ◽  
Teemu Sarjovaara ◽  
Martti Larmi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document