An Investigation of Varying Peak Height and Leading Edge Roundness on the Aerodynamic Performance of Corrugated Wings at Low Reynolds Number

2022 ◽  
Author(s):  
Syed Hassan R. Shah ◽  
Madison Mckinney ◽  
Zaeem Shabbir ◽  
Anwar Ahmed
Author(s):  
R. Deeksha ◽  
Mahesh K. Varpe

Abstract Wind energy has become one of the vital sustainable energy resources and a leading contender to the renewable resources race. The need of extending the aerodynamic performance of a wind turbine paved the way for radical approaches in the design of wind turbine blades. One such promising technique is the adoption of passive flow controls like leading edge protuberance or tubercles. In this paper the aerodynamic performance of NACA0009 (baseline) superimposed with a leading edge protuberance is numerically investigated in the post-stall operating conditions. The investigation objective was to identify the optimum pitch to amplitude ratio of the protuberance in the post stall operating condition for a low Reynolds number of 5 × 104. Computational fluid dynamics computations were performed using κ-ω SST turbulence model. The optimum pitch to amplitude ratio was found to be 6 which enhanced the aerodynamic lift coefficient by 42% in the post stall operating condition. The lift is reduced at lower AOA but gets complement in the post stall operating conditions.


2000 ◽  
Author(s):  
Ajit Pal Singh ◽  
S. H. Winoto ◽  
D. A. Shah ◽  
K. G. Lim ◽  
Robert E. K. Goh

Abstract Performance characteristics of some low Reynolds number airfoils for the use in micro air vehicles (MAVs) are computationally studied using XFOIL at a Reynolds number of 80,000. XFOIL, which is based on linear-vorticity stream function panel method coupled with a viscous integral formulation, is used for the analysis. In the first part of the study, results obtained from the XFOIL have been compared with available experimental data at low Reynolds numbers. XFOIL is then used to study relative aerodynamic performance of nine different airfoils. The computational analysis has shown that the S1223 airfoil has a relatively better performance than other airfoils considered for the analysis.


Sign in / Sign up

Export Citation Format

Share Document