Orion Power Transfer: Impacts of a Battery-on-Bus Power System Architecture

2022 ◽  
Author(s):  
Spencer C. Furin
Author(s):  
Diego A. Monroy-Ortiz ◽  
Sergio A. Dorado-Rojas ◽  
Eduardo Mojica-Nava ◽  
Sergio Rivera

Abstract This article presents a comparison between two different methods to perform model reduction of an Electrical Power System (EPS). The first is the well-known Kron Reduction Method (KRM) that is used to remove the interior nodes (also known as internal, passive, or load nodes) of an EPS. This method computes the Schur complement of the primitive admittance matrix of an EPS to obtain a reduced model that preserves the information of the system as seen from to the generation nodes. Since the primitive admittance matrix is equivalent to the Laplacian of a graph that represents the interconnections between the nodes of an EPS, this procedure is also significant from the perspective of graph theory. On the other hand, the second procedure based on Power Transfer Distribution Factors (PTDF) uses approximations of DC power flows to define regions to be reduced within the system. In this study, both techniques were applied to obtain reduced-order models of two test beds: a 14-node IEEE system and the Colombian power system (1116 buses), in order to test scalability. In analyzing the reduction of the test beds, the characteristics of each method were classified and compiled in order to know its advantages depending on the type of application. Finally, it was found that the PTDF technique is more robust in terms of the definition of power transfer in congestion zones, while the KRM method may be more accurate.


2021 ◽  
Author(s):  
Syed Rahman ◽  
Jonathan Ghering ◽  
Irfan A. Khan ◽  
Mohd. Tariq ◽  
Akhtar Kalam ◽  
...  

2019 ◽  
Vol 9 (16) ◽  
pp. 3218 ◽  
Author(s):  
Qi Wang ◽  
Hongru Wang ◽  
Lei Zhu ◽  
Xingquan Wu ◽  
Yi Tang

Demand response (DR) is widely accepted as a feasible and potential solution to improve the operation of the power system. In this paper, an economical and practical DR system architecture based on internet and Internet of things (IoT) communication technologies is discussed to achieve wide-area DR control without using an expensive metering infrastructure. Multi agents are introduced with respective control strategies to implement multi-time-scale control in a power system. In order to support quick DR strategies, a novel smart terminal design for the proposed DR system is described with functions of local parameter detection and action. The practicality of the proposed system was validated on a developed hardware-in-loop co-simulation platform.


2010 ◽  
Author(s):  
Tim C. O'Connell ◽  
Brian C. Raczkowski ◽  
Marco Amrhein ◽  
Jason R. Wells ◽  
Marco J. Tavernini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document