Skip re-entry trajectory detection in aero-assisted orbit transfer

2022 ◽  
Author(s):  
HongQiang Sun ◽  
Peng Tang ◽  
Shuguang Zhang
Keyword(s):  
1986 ◽  
Author(s):  
J. HERMEL ◽  
R. MEESE ◽  
W. ROGERS ◽  
R. KUSHIDA ◽  
J. BEATTIE
Keyword(s):  

2005 ◽  
Author(s):  
He Xingsuo ◽  
Wang Ping ◽  
Yuan Jianping ◽  
Lin Shengyong

Author(s):  
Aleksandr F. BRAGAZIN ◽  
Alexey V. USKOV

Consideration has been given to orbit transfers involving spacecraft rendezvous which belong to a class of coplanar non-intersecting near-circular orbits of a spacecraft and a space station. The duration of the transfer is assumed to be limited by one orbit. The feasibility of a rendezvous using an optimal two-burn orbit-to-orbit transfer is studied. To determine a single free parameter of the transfer, i.e. the time of its start, ensuring a rendezvous at a given time or at a given velocity at the end of transfer, appropriate equations have been obtained To implement in the guidance algorithms optimal three-burn correction programs are proposed to achieve a rendezvous at a given time with a specified relative velocity at the moment of spacecraft contact. A range of phase differences at the start of maneuvering is determined, within which the characteristic velocity of the rendezvous is equal to the minimum characteristic velocity of the orbit-to-orbit transfer. The paper presents simulation results for “quick" rendezvous profiles that use the proposed programs. Key words: spacecraft, orbital station, “quick” rendezvous, orbit transfer, rendezvous program.


2012 ◽  
Vol 225 ◽  
pp. 411-416 ◽  
Author(s):  
Aaron Aw Teik Hong ◽  
Renuganth Varatharajoo

Tethered Satellite Systems (TSS) have been used in various applications such as in performing space interferometry, orbit transfer and other relevant fields. As far as the operation system of a TSS is concerned, it is crucial to ensure that the tether will not go slack as its slackness would adversely affects the overall operation outcome due to an undesirable system dynamics. Therefore, it is important to investigate the types of conditions that will cause the tether slackness. Investigations on in-plane and out-of plane libration angles can be utilized to measure at what point that the tether will go slack. Based on previous research works, usually a rigid tether comprising of a uniformed mass is considered while the connecting two satellites are regarded as point masses in order to simplify the governing dynamics equation of motion. However, in order to develop a much more accurate modeling, a flexible tether is chosen by further incorporating the reeling mechanism, attitude dynamics of rigid bodies and tether deformations. Furthermore, a tether has a tendency to go slack if the in-plane and out-of plane libration angle exceeds 65° and 60° respectively regardless of the types of tether utilized whether it being a rigid or a flexible one. Thus, the tension of the tether will serves as a constraint and plotted against the in-plane and out-of plane libration motions that would be attained via the generalized forces. The results will then be analyzed to establish in-plane and out-of plane libration boundaries. Subsequently, the in-plane and out-of plane operation contrains are established for TSS corresponding to a reference mission.


Sign in / Sign up

Export Citation Format

Share Document