Study of n-heptane oxidation by using a high-pressure jet stirred reactor at 100 atm

2022 ◽  
Author(s):  
Hao Zhao ◽  
Chao Yan ◽  
Ziyu Wang ◽  
Yiguang Ju
Author(s):  
Robert C. Steele ◽  
Jon H. Tonouchi ◽  
David G. Nicol ◽  
David C. Horning ◽  
Philip C. Malte ◽  
...  

A high-pressure jet-stirred reactor (HP-JSR) has been built and applied to the study of NOx and N2O formation and CO oxidation in lean-premixed (LPM) combustion. The measurements obtained with the HP-JSR provide information on how NOx forms in lean-premixed, high-intensity combustion, and provide comparison to NOx data published recently for practical LPM combustors. The HP-JSR results indicate that the NOx yield is significantly influenced by the rate of relaxation of super-equilibrium concentrations of the O-atom. Also indicated by the HP-JSR results are characteristic NOx formation rates. Two computational models are used to simulate the HP-JSR, and to provide comparison to the measurements. The first is a chemical reactor model (CRM) consisting of two perfectly-stirred reactors (PSRs) placed in series. The second is a stirred reactor model with finite rate macromixing (i.e., recirculation) and micromixing. The micromixing is treated by either coalescence-dispersion (CD) or interaction-by-exchange-with-the-mean (IEM) theory. Additionally, a model based on one-dimensional gas dynamics with chemical reaction is used to assess chemical conversions within the gas sample probe.


1998 ◽  
Vol 27 (1) ◽  
pp. 1393-1399 ◽  
Author(s):  
Karin U.M. Bengtsson ◽  
Peter Benz ◽  
Rolf Schären ◽  
Christos E. Frouzakis

1998 ◽  
Vol 120 (2) ◽  
pp. 303-310 ◽  
Author(s):  
R. C. Steele ◽  
J. H. Tonouchi ◽  
D. G. Nicol ◽  
D. C. Horning ◽  
P. C. Malte ◽  
...  

A high-pressure jet-stirred reactor (HP-JSR) has been built and applied to the study of NOx and N2o formation and CO oxidation in lean-Premixed (LPM) combustion. The measurements obtained with the HP-JSR Provide information on how NOx forms in lean-premixed, high-intensity combustion, and provide comparison to NOx data published recently for practical LPM combustors. The HP-JSR results indicate that the NOx yield is significantly influenced by the rate of relaxation of super-equilibrium concentrations of the O-atom. Also indicated by the HP-JSR results are characteristic NOx formation rates. Two computational models are used to simulate the HP-JSR and to provide comparison to the measurements. The first is a chemical reactor model (CRM) consisting of two perfectly stirred reactors (PSRs) placed in series. The second is a stirred reactor model with finite rate macromixing (i.e., recirculation) and micromixing. The micromixing is treated by either coalescence-dispersion (CD) or interaction by exchange with the mean (IEM) theory. Additionally, a model based on one-dimensional gas dynamics with chemical reaction is used to assess chemical conversions within the gas sample probe.


Author(s):  
Marek Malecki ◽  
James Pawley ◽  
Hans Ris

The ultrastructure of cells suspended in physiological fluids or cell culture media can only be studied if the living processes are stopped while the cells remain in suspension. Attachment of living cells to carrier surfaces to facilitate further processing for electron microscopy produces a rapid reorganization of cell structure eradicating most traces of the structures present when the cells were in suspension. The structure of cells in suspension can be immobilized by either chemical fixation or, much faster, by rapid freezing (cryo-immobilization). The fixation speed is particularly important in studies of cell surface reorganization over time. High pressure freezing provides conditions where specimens up to 500μm thick can be frozen in milliseconds without ice crystal damage. This volume is sufficient for cells to remain in suspension until frozen. However, special procedures are needed to assure that the unattached cells are not lost during subsequent processing for LVSEM or HVEM using freeze-substitution or freeze drying. We recently developed such a procedure.


Sign in / Sign up

Export Citation Format

Share Document