ethane oxidation
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 11)

H-INDEX

14
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4294
Author(s):  
Ana P. C. Ribeiro ◽  
Inês A. S. Matias ◽  
Poorya Zargaran ◽  
A. Stephen K. Hashmi ◽  
Luísa M. D. R. S. Martins

The highly efficient eco-friendly synthesis of acetic acid (40% yield) directly from ethane is achieved by the unprecedented use of N-heterocyclic carbene (NHC) and N-heterocyclic oxo-carbene (NHOC) gold(I) catalysts in mild conditions. This is a selective and promising protocol to generate directly acetic acid from ethane, in comparison with the two most used methods: (i) the three-step, capital- and energy-intensive process based on the high-temperature conversion of methane to acetic acid; (ii) the current industrial methanol carbonylation processes, based in iridium and expensive rhodium catalysts. Green metrics determinations highlight the environmental advantages of the new ethane oxidation procedure. Comparison with previous reported published catalysts is performed to highlight the features of this remarkable protocol.


2021 ◽  
Vol 12 (16) ◽  
pp. 5825-5833
Author(s):  
Yao Zhu ◽  
Siyuan Fang ◽  
Shaoqin Chen ◽  
Youjie Tong ◽  
Chunling Wang ◽  
...  

Highly efficient visible-light driven photocatalytic oxidation of ethane into ethyl hydroperoxide was realized for the first time over Au/WO3.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5642
Author(s):  
Inês A. S. Matias ◽  
Ana P. C. Ribeiro ◽  
Luísa M. D. R. S. Martins

The direct, one-pot oxidation of ethane to acetic acid was, for the first time, performed using a C-scorpionate complex anchored onto a magnetic core-shell support, the Fe3O4/TiO2/[FeCl2{κ3-HC(pz)3}] composite. This catalytic system, where the magnetic catalyst is easily recovered and reused, is highly selective to the acetic acid synthesis. The performed green metrics calculations highlight the “greeness” of the new ethane oxidation procedure.


2020 ◽  
Vol 63 (19-20) ◽  
pp. 1754-1764
Author(s):  
Daniel Melzer ◽  
Gerhard Mestl ◽  
Klaus Wanninger ◽  
Andreas Jentys ◽  
Maricruz Sanchez-Sanchez ◽  
...  

AbstractThe pathways of ethane oxidative dehydrogenation and total combustion have been elucidated for M1 phase type Mo–V oxide catalysts with different metal composition. The ethane oxidation mechanism is not affected by the presence of Te or Nb. Conversely, the selectivity is strongly affected by stoichiometry of M1 catalysts. This is attributed to the facile oxidation of ethene to COx upon formation of unselective VOx species in the absence of Te and Nb.


2020 ◽  
Vol 10 ◽  
pp. 100418 ◽  
Author(s):  
Jing Ding ◽  
Liang Fu ◽  
Yongze Lu ◽  
Zhaowei Ding ◽  
Raymond Jianxiong Zeng

mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Cedric Jasper Hahn ◽  
Rafael Laso-Pérez ◽  
Francesca Vulcano ◽  
Konstantinos-Marios Vaziourakis ◽  
Runar Stokke ◽  
...  

ABSTRACT Cold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of California) and ethane as the substrate, we cultured microbial consortia of a novel anaerobic ethane oxidizer, “Candidatus Ethanoperedens thermophilum” (GoM-Arc1 clade), and its partner bacterium “Candidatus Desulfofervidus auxilii,” previously known from methane-oxidizing consortia. The sulfate reduction activity of the culture doubled within one week, indicating a much faster growth than in any other alkane-oxidizing archaea described before. The dominance of a single archaeal phylotype in this culture allowed retrieval of a closed genome of “Ca. Ethanoperedens,” a sister genus of the recently reported ethane oxidizer “Candidatus Argoarchaeum.” The metagenome-assembled genome of “Ca. Ethanoperedens” encoded a complete methanogenesis pathway including a methyl-coenzyme M reductase (MCR) that is highly divergent from those of methanogens and methanotrophs. Combined substrate and metabolite analysis showed ethane as the sole growth substrate and production of ethyl-coenzyme M as the activation product. Stable isotope probing demonstrated that the enzymatic mechanism of ethane oxidation in “Ca. Ethanoperedens” is fully reversible; thus, its enzymatic machinery has potential for the biotechnological development of microbial ethane production from carbon dioxide. IMPORTANCE In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing bacterium known to aid in methane oxidation and have retrieved the first complete genome of a short-chain alkane-degrading archaeon. This will greatly enhance the understanding of nonmethane alkane activation by noncanonical methyl-coenzyme M reductase enzymes and provide insights into additional metabolic steps and the mechanisms underlying syntrophic partnerships. Ultimately, this knowledge could lead to the biotechnological development of alkanogenic microorganisms to support the carbon neutrality of industrial processes.


2020 ◽  
Vol 6 (17) ◽  
pp. eaaz9339 ◽  
Author(s):  
Yunfei Gao ◽  
Xijun Wang ◽  
Junchen Liu ◽  
Chuande Huang ◽  
Kun Zhao ◽  
...  

Acceptor-doped, redox-active perovskite oxides such as La0.8Sr0.2FeO3 (LSF) are active for ethane oxidation to COx but show poor selectivity to ethylene. This article reports molten Li2CO3 as an effective “promoter” to modify LSF for chemical looping–oxidative dehydrogenation (CL-ODH) of ethane. Under the working state, the redox catalyst is composed of a molten Li2CO3 layer covering the solid LSF substrate. The molten layer facilitates the transport of active peroxide (O22−) species formed on LSF while blocking the nonselective sites. Spectroscopy measurements and density functional theory calculations indicate that Fe4+→Fe3+ transition is responsible for the peroxide formation, which results in both exothermic ODH and air reoxidation steps. With >90% ethylene selectivity, up to 59% ethylene yield, and favorable heat of reactions, the core-shell redox catalyst has an excellent potential to be effective for intensified ethane conversion. The mechanistic findings also provide a generalized approach for designing CL-ODH redox catalysts.


2020 ◽  
Author(s):  
Cedric Jasper Hahn ◽  
Rafael Laso-Pérez ◽  
Francesca Vulcano ◽  
Konstantinos-Marios Vaziourakis ◽  
Runar Stokke ◽  
...  

ABSTRACTCold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of California) and ethane as substrate we cultured microbial consortia of a novel anaerobic ethane oxidizer Candidatus Ethanoperedens thermophilum (GoM-Arc1 clade) and its partner bacterium Candidatus Desulfofervidus auxilii previously known from methane-oxidizing consortia. The sulfate reduction activity of the culture doubled within one week, indicating a much faster growth than in any other alkane-oxidizing archaea described before. The dominance of a single archaeal phylotype in this culture allowed retrieving a closed genome of Ca. Ethanoperedens, a sister genus of the recently reported ethane oxidizer Candidatus Argoarchaeum. The metagenome-assembled genome of Ca. Ethanoperedens encoded for a complete methanogenesis pathway including a methyl-coenzyme M reductase (MCR) that is highly divergent from those of methanogens and methanotrophs. Combined substrate and metabolite analysis showed ethane as sole growth substrate and production of ethyl-coenzyme M as activation product. Stable isotope probing showed that the enzymatic mechanisms of ethane oxidation in Ca. Ethanoperedens is fully reversible, thus its enzymatic machinery has potential for the biotechnological development of microbial ethane production from carbon dioxide.IMPORTANCEIn the seabed gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing bacterium known to aid in methane oxidation, and have retrieved the first complete genome of a short-chain alkane-degrading archaeon. This will greatly enhance the understanding of non-methane alkane activation by non-canonical methyl-coenzyme M reductase enzymes, and provide insights into additional metabolic steps and the mechanisms underlying syntrophic partnerships. Ultimately, this knowledge could lead to the biotechnological development of alkanogenic microorganisms to support the carbon neutrality of industrial processes.EtymologyEthanoperedens. ethano, (new Latin): pertaining to ethane; peredens (Latin): consuming, devouring; thermophilum. (Greek): heat-loving. The name implies an organism capable of ethane oxidation at elevated temperatures.LocalityEnriched from hydrothermally heated, hydrocarbon-rich marine sediment of the Guaymas Basin at 2000 m water depth, Gulf of California, Mexico.DiagnosisAnaerobic, ethane-oxidizing archaeon, mostly coccoid, about 0.7 μm in diameter, forms large irregular cluster in large dual-species consortia with the sulfate-reducing partner bacterium ‘Candidatus Desulfofervidus auxilii’.


2020 ◽  
Vol 5 (7) ◽  
pp. 2232-2239 ◽  
Author(s):  
Yu He ◽  
Zhongqing Yang ◽  
Zhilei Liu ◽  
Peng Wang ◽  
Mingnv Guo ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document