Emulating the Effect of a Swept Wing Boundary Layer Fence Through Unsteady Vortex Generating Jets

2022 ◽  
Author(s):  
Evan J. McFadden ◽  
Patrick J. Brandt ◽  
Jeffrey P. Bons
Keyword(s):  
2019 ◽  
Vol 1404 ◽  
pp. 012092
Author(s):  
M M Katasonov ◽  
V V Kozlov ◽  
A M Pavlenko ◽  
I A Sadovskii

2021 ◽  
Vol 33 (2) ◽  
pp. 024108
Author(s):  
Jianqiang Chen ◽  
Siwei Dong ◽  
Xi Chen ◽  
Xianxu Yuan ◽  
Guoliang Xu

2012 ◽  
Vol 711 ◽  
pp. 516-544 ◽  
Author(s):  
David Tempelmann ◽  
Lars-Uve Schrader ◽  
Ardeshir Hanifi ◽  
Luca Brandt ◽  
Dan S. Henningson

AbstractThe receptivity to localized surface roughness of a swept-wing boundary layer is studied by direct numerical simulation (DNS) and computations using the parabolized stability equations (PSEs). The DNS is laid out to reproduce wind tunnel experiments performed by Saric and coworkers, where micron-sized cylinders were used to trigger steady crossflow modes. The amplitudes of the roughness-induced fundamental crossflow wave and its superharmonics obtained from nonlinear PSE solutions agree excellently with the DNS results. A receptivity model using the direct and adjoint PSEs is shown to provide reliable predictions of the receptivity to roughness cylinders of different heights and chordwise locations. Being robust and computationally efficient, the model is well suited as a predictive tool of receptivity in flows of practical interest. The crossflow mode amplitudes obtained based on both DNS and PSE methods are 40 % of those measured in the experiments. Additional comparisons between experimental and PSE data for various disturbance wavelengths reveal that the measured disturbance amplitudes are consistently larger than those predicted by the PSE-based receptivity model by a nearly constant factor. Supplementary DNS and PSE computations suggest that possible natural leading-edge roughness and free-stream turbulence in the experiments are unlikely to account for this discrepancy. It is more likely that experimental uncertainties in the streamwise location of the roughness array and cylinder height are responsible for the additional receptivity observed in the experiments.


2008 ◽  
Vol 3 (3) ◽  
pp. 34-38
Author(s):  
Sergey A. Gaponov ◽  
Yuri G. Yermolaev ◽  
Aleksandr D. Kosinov ◽  
Nikolay V. Semionov ◽  
Boris V. Smorodsky

Theoretical and an experimental research results of the disturbances development in a swept wing boundary layer are presented at Mach number М = 2. In experiments development of natural and small amplitude controllable disturbances downstream was studied. Experiments were carried out on a swept wing model with a lenticular profile at a zero attack angle. The swept angle of a leading edge was 40°. Wave parameters of moving disturbances were determined. In frames of the linear theory and an approach of the local self-similar mean flow the stability of a compressible three-dimensional boundary layer is studied. Good agreement of the theory with experimental results for transversal scales of unstable vertices of the secondary flow was obtained. However the calculated amplification rates differ from measured values considerably. This disagreement is explained by the nonlinear processes observed in experiment


AIAA Journal ◽  
2019 ◽  
Vol 57 (1) ◽  
pp. 267-278 ◽  
Author(s):  
Jenna L. Eppink ◽  
Richard W. Wlezien ◽  
Rudolph A. King ◽  
Meelan Choudhari

2013 ◽  
Vol 8 (2) ◽  
pp. 55-69
Author(s):  
Stepan Tolkachev ◽  
Vasily Gorev ◽  
Viktor Kozlov

In this work the combined technique of liquid-crystal thermography and thermoanemometry measurements is used to trace the stationary disturbance development from the moment of formation to the nonlinear stage transition. It has been shown that the pair of stationary vortices are formed after the cylindrical roughness element. These vortices modify a boundary layer and destabilize it. There is the area of maximal receptivity to the roughness location, which in the experiment was distant from the attachment line. If the stationary disturbance has enough magnitude in its core the secondary disturbances excite and lead to the laminar-turbulent transition. Secondary disturbances are sensitive to the acoustics and achieve the magnitude in hundred times higher than for the natural case


2017 ◽  
Vol 12 (1) ◽  
pp. 57-65
Author(s):  
Alex Yatskih ◽  
Marina Rumenskikh ◽  
Yuri Yermolaev ◽  
Aleksandr Kosinov ◽  
Nikolay Semionov ◽  
...  

The results of experimental study of excitation of localized in time and space controlled disturbances (wave packets) in a supersonic swept-wing boundary layer are presented. The experiments were performed at Mach number M = 2 on the model of wing with a lenticular profile and a 40 degrees sweep angle of the leading edge at zero angle of attack. Wave packets were generated by a pulse electric discharge on the surface of the model. A structure of controlled wave packet was studied. It was found that the wave packet has an asymmetric shape. Comparison with the case of twodimensional boundary layer was done.


Sign in / Sign up

Export Citation Format

Share Document