Low-Wavenumber Wall Pressure Measurements in Zero-Pressure Gradient Boundary Layer Flow

2022 ◽  
Author(s):  
Shishir Damani ◽  
Humza Butt ◽  
Jarrod T. Banks ◽  
Surabhi Srivastava ◽  
N. Agastya Balantrapu ◽  
...  
2004 ◽  
Vol 126 (1) ◽  
pp. 32-41 ◽  
Author(s):  
B. W. van Oudheusden

The relation between velocity and enthalpy in steady boundary layer flow is known as the Crocco relation. It describes that for an adiabatic wall the total enthalpy remains constant throughout the boundary layer, when the Prandtl number (Pr) is one, irrespective of pressure gradient and compressibility. A generalization of the Crocco relation for Pr near one is obtained from a perturbation approach. In the case of constant-property flow an analytic expression is found, representing a first-order extension of the standard Crocco relation and confirming the asymptotic validity of the square-root dependence of the recovery factor on Prandtl number. The particular subject of the present study is the effect of compressibility on the extended Crocco relation and, hence, on the thermal recovery in laminar flows. A perturbation analysis for constant Pr reveals two additional mechanisms of compressibility effects in the extended Crocco relation, which are related to the viscosity law and to the pressure gradient. Numerical solutions for (quasi-)self-similar as well as non-similar boundary layers are presented to evaluate these effects quantitatively.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 710
Author(s):  
Michalis A. Xenos ◽  
Eugenia N. Petropoulou ◽  
Anastasios Siokis ◽  
U. S. Mahabaleshwar

The physical problem under consideration is the boundary layer problem of an incompressible, laminar flow, taking place over a flat plate in the presence of a pressure gradient and radiation. For the mathematical formulation of the problem, the partial differential equations of continuity, energy, and momentum are taken into consideration with the boundary layer simplifications. Using the dimensionless Falkner–Skan transformation, a nonlinear, nonhomogeneous, coupled system of partial differential equations (PDEs) is obtained, which is solved via the homotopy analysis method. The obtained analytical solution describes radiation and pressure gradient effects on the boundary layer flow. These analytical results reveal that the adverse or favorable pressure gradient influences the dimensionless velocity and the dimensionless temperature of the boundary layer. An adverse pressure gradient causes significant changes on the dimensionless wall shear parameter and the dimensionless wall heat-transfer parameter. Thermal radiation influences the thermal boundary layer. The analytical results are in very good agreement with the corresponding numerical ones obtained using a modification of the Keller’s-box method.


2000 ◽  
Vol 108 (1) ◽  
pp. 71-75 ◽  
Author(s):  
Timothy A. Brungart ◽  
Wayne J. Holmberg ◽  
Arnold A. Fontaine ◽  
Steven Deutsch ◽  
Howard L. Petrie

AIAA Journal ◽  
1983 ◽  
Vol 21 (4) ◽  
pp. 495-502 ◽  
Author(s):  
A. L. Laganelli ◽  
A. Martellucci ◽  
L. L. Shaw

2019 ◽  
Vol 31 (3) ◽  
pp. 031701 ◽  
Author(s):  
Prasannabalaji Sundaram ◽  
Tapan K. Sengupta ◽  
Soumyo Sengupta

Sign in / Sign up

Export Citation Format

Share Document