Incompressible Two-Dimensional Stagnation-Point Flow of an Electrically Conducting Viscous Fluid in the Presence of a Magnetic Field

1958 ◽  
Vol 25 (3) ◽  
pp. 194-198 ◽  
Author(s):  
JOSEPH L. NEURINGER ◽  
WILLIAM McILROY
2008 ◽  
Vol 2008 ◽  
pp. 1-15
Author(s):  
F. Labropulu

The unsteady two-dimensional stagnation point flow of the Walters B' fluid impinging on an infinite plate in the presence of a transverse magnetic field is examined and solutions are obtained. It is assumed that the infinite plate aty=0is making harmonic oscillations in its own plane. A finite difference technique is employed and solutions for small and large frequencies of the oscillations are obtained for various values of the Hartmann's number and the Weissenberg number.


2015 ◽  
Vol 70 (5) ◽  
pp. 317-324 ◽  
Author(s):  
Tasawar Hayat ◽  
Muhammad Farooq ◽  
Ahmad Alsaedi

AbstractThe present work addresses the double stratified mixed convection stagnation point flow induced by an impermeable inclined stretching cylinder. The fluid is electrically conducting in the presence of an inclined magnetic field. Viscous dissipation is considered. Temperature and concentration at and away from the boundary are assumed variable. Series solutions of momentum, energy, and concentration equations are computed. The characteristics of various physical parameters on the distributions of velocity, temperature, and concentration are analyzed graphically. Behaviours of skin friction coefficient, Nusselt, and Sherwood numbers are discussed numerically. Comparison of the skin friciton coefficient is also examined in the limiting case.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
A. Sinha ◽  
J. C. Misra

In this paper, the steady magnetohydrodynamic (MHD) stagnation point flow of an incompressible viscous electrically conducting fluid over a stretching sheet has been investigated. Velocity and thermal slip conditions have been incorporated in the study. The effects of induced magnetic field and thermal radiation have also been duly taken into account. The nonlinear partial differential equations arising out of the mathematical analysis of the problem are transformed into a system of nonlinear ordinary differential equations by using similarity transformation and boundary layer approximation. These equations are solved by developing an appropriate numerical method. Considering an illustrative example, numerical results are obtained for velocity, temperature, skin friction, and Nusselt number by considering a chosen set of values of various parameters involved in the study. The results are presented graphically/in tabular form.


2010 ◽  
Vol 78 (2) ◽  
Author(s):  
T. Ray Mahapatra ◽  
S. K. Nandy ◽  
A. S. Gupta

The steady two-dimensional magnetohydrodynamic (MHD) stagnation-point flow of an electrically conducting incompressible viscous fluid toward a shrinking sheet is investigated. The sheet is shrunk in its own plane with a velocity proportional to the distance from the stagnation-point and a uniform magnetic field is applied normal to the sheet. Velocity component parallel to the sheet is found to increase with an increase in the magnetic field parameter M. A region of reverse flow occurs near the surface of the shrinking sheet. It is shown that as M increases, the tendency of this flow reversal decreases. It is also observed that the nonalignment of the stagnation-point flow and the shrinking sheet considerably complicates the flow structure. The effect of the magnetic parameter M on the streamlines is shown for both aligned and nonaligned cases. The temperature distribution in the boundary layer is found when the surface is held at constant temperature. The analysis reveals that the temperature at a point increases with increasing M in a certain neighborhood of the surface but beyond this, the temperature decreases with increasing M. For fixed M, the surface heat flux decreases with increase in the shrinking rate.


2017 ◽  
Vol 65 (2) ◽  
pp. 155-162 ◽  
Author(s):  
A. Rauf ◽  
S. A. Shehzad ◽  
T. Hayat ◽  
M. A. Meraj ◽  
A. Alsaedi

AbstractIn this article the stagnation point flow of electrically conducting micro nanofluid towards a shrinking sheet, considering a chemical reaction of first order is investigated. Involvement of magnetic field occurs in the momentum equation, whereas the energy and concentrations equations incorporated the influence of thermophoresis and Brownian motion. Convective boundary condition on temperature and zero mass flux condition on concentration are implemented. Partial differential equations are converted into the ordinary ones using suitable variables. The numerical technique is utilized to discuss the results for velocity, microrotation, temperature, and concentration fields.


Sign in / Sign up

Export Citation Format

Share Document