Space-Time Correlations of Fluctuating Wall Pressure in a Turbulent Boundary Layer

1958 ◽  
Vol 25 (5) ◽  
pp. 335-336 ◽  
Author(s):  
W. W. Willmarth
1958 ◽  
Vol 3 (4) ◽  
pp. 344-356 ◽  
Author(s):  
A. J. Favre ◽  
J. J. Gaviglio ◽  
R. J. Dumas

This paper describes the results of further experimental investigation of the turbulent boundary layer with zero pressure gradient. Measurements of autocorrelation and of space-time double correlation have been made respectively with single hot-wires and with two hot-wires with the separation vector in any direction. Space-time correlations reach a maximum for some optimum delay. In the case of two points set on a line orthogonal to the plate, the optimum delay Ti is not zero. In the general case it is equal to the corresponding delay Ti, increased by compensating delay for translation with the mean flow. Taylor's hypothesis may be applied to the boundary layer at distances from the wall greater than 3% of the layer thickness. Space-time isocorrelation surfaces obtained with optimum delay have a large aspect ratio in the mean flow direction, even if they are relative to a point close to the wall (0·03δ); the correlations along the mean flow then retain high values on account of the large scale of the turbulence.


2018 ◽  
Vol 840 ◽  
pp. 25-55 ◽  
Author(s):  
Myriam Slama ◽  
Cédric Leblond ◽  
Pierre Sagaut

The present study addresses the computation of the wall pressure spectrum for a turbulent boundary layer flow without pressure gradient, at high Reynolds numbers, using a new model, the Kriging-based elliptic extended anisotropic model (KEEAM). A space–time solution to the Poisson equation for the wall pressure fluctuations is used. Both the turbulence–turbulence and turbulence–mean shear interactions are taken into account. It involves the mean velocity field and space–time velocity correlations which are modelled using Reynolds stresses and velocity correlation coefficients. We propose a new model, referred to as the extended anisotropic model, to evaluate the latter in all regions of the boundary layer. This model is an extension of the simplified anisotropic model of Gavin (PhD thesis, 2002, The Pennsylvania State University, University Park, PA) which was developed for the outer part of the boundary layer. It relies on a new expression for the spatial velocity correlation function and new parameters calibrated using the direct numerical simulation results of Sillero et al. (Phys. Fluids, vol. 26, 2014, 105109). Spatial correlation coefficients are related to space–time coefficients with the elliptic model of He & Zhang (Phys. Rev. E, vol. 73, 2006, 055303). The turbulent quantities necessary for the pressure computation are obtained by Reynolds-averaged Navier–Stokes solutions with a Reynolds stress turbulence model. Then, the pressure correlations are evaluated with a self-adaptive sampling strategy based on Kriging in order to reduce the computation time. The frequency and wavenumber–frequency wall pressure spectra obtained with the KEEAM agree well with empirical models developed for turbulent boundary layer flows without pressure gradient.


1985 ◽  
Vol 160 ◽  
pp. 77-92 ◽  
Author(s):  
B. Chehroudi ◽  
R. L. Simpson

A rapidly scanning one-velocity-component directionally sensitive fringe-type laser-Doppler anemometer which scans the measurement volume perpendicular to the optical axis of the transmitting optics was used to investigate the flow structure of the steady freestream separated turbulent boundary layer of Simpson, Chew & Shivaprasad (1981a). Space–time correlations were obtained for the first time in a separated turbulent boundary layer and showed that the integral lengthscale Ly for the large eddies grows in size towards detachment, although the ratio of this lengthscale to the boundary-layer thickness remains constant. Results also indicate local dependence of the backflow on the middle and outer regions of the boundary layer at a given instant in time.


2011 ◽  
Vol 671 ◽  
pp. 288-312 ◽  
Author(s):  
MATTEO BERNARDINI ◽  
SERGIO PIROZZOLI ◽  
FRANCESCO GRASSO

The structure of wall pressure fluctuations beneath a turbulent boundary layer interacting with a normal shock wave at Mach number M∞ = 1.3 is studied exploiting a direct numerical simulation database. Upstream of the interaction, in the zero-pressure-gradient region, pressure statistics compare well with canonical low-speed boundary layers in terms of fluctuation intensities, space–time correlations, convection velocities and frequency spectra. Across the interaction zone, the root-mean-square wall pressure fluctuations attain very large values (in excess of 162 dB), with a maximum increase of about 7 dB from the upstream level. The two-point wall pressure correlations become more elongated in the spanwise direction, indicating an increase of the pressure-integral length scales, and the convection velocities (determined from space–time correlations) are reduced. The interaction qualitatively modifies the shape of the frequency spectra, causing enhancement of the low-frequency Fourier modes and inhibition of the higher ones. In the recovery region past the interaction, the pressure spectra collapse very accurately when scaled with either the free-stream dynamic pressure or the maximum Reynolds shear stress, and exhibit distinct power-law regions with exponent −7/3 at intermediate frequencies and −5 at high frequencies. An analysis of the pressure sources in the Lighthill's equation for the instantaneous pressure has been performed to understand their contributions to the wall pressure signature. Upstream of the interaction the sources are mainly located in the proximity of the wall, whereas past the shock, important contributions to low-frequency pressure fluctuations are associated with long-lived eddies developing far from the wall.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1088-1096
Author(s):  
O. H. Unalmis ◽  
D. S. Dolling

Author(s):  
Frank J. Aldrich

A physics-based approach is employed and a new prediction tool is developed to predict the wavevector-frequency spectrum of the turbulent boundary layer wall pressure fluctuations for subsonic airfoils under the influence of adverse pressure gradients. The prediction tool uses an explicit relationship developed by D. M. Chase, which is based on a fit to zero pressure gradient data. The tool takes into account the boundary layer edge velocity distribution and geometry of the airfoil, including the blade chord and thickness. Comparison to experimental adverse pressure gradient data shows a need for an update to the modeling constants of the Chase model. To optimize the correlation between the predicted turbulent boundary layer wall pressure spectrum and the experimental data, an optimization code (iSIGHT) is employed. This optimization module is used to minimize the absolute value of the difference (in dB) between the predicted values and those measured across the analysis frequency range. An optimized set of modeling constants is derived that provides reasonable agreement with the measurements.


Sign in / Sign up

Export Citation Format

Share Document