scholarly journals A new approach with multiple realizations for image perturbation using co-simulation and probability perturbation method

Author(s):  
Gonçalo Soares Oliveira ◽  
Célio Maschio ◽  
Denis José Schiozer

History matching is an inverse problem with multiple possible answers. The petrophysical properties of a reservoir are highly uncertain because data points are scarce and widely scattered. Some methods reduce uncertainty in petrophysical characterization; however, they commonly use a single matched model as a reference, which may excessively reduce uncertainty. Choosing a single image may cause the model to converge to a local minimum, yielding less reliable history matching. This work improves on the history matching presented by Oliveira et al. ((2017a) J. Petrol. Sci. Eng. 153, 111–122) using a benchmark model (UNISIM-I-H based on the Namorado field in Brazil). We use a new approach for a Probability Perturbation Method and image perturbation using Co-Simulation. Instead of using a single image as the reference, a set of best images is used to increase variability in the properties of the reservoir model while matching production data with history data. This approach mitigates the risk of the potentially excessive reduction of uncertainties that can happen when using a single model. Our methodology also introduces a new objective function for water breakthrough, improving model quality because of the importance of matching the water breakthrough in the process. Our proposed methodology for image perturbation uses the UNISIM-I-H, which comprises 25 wells and has 11 years of history data. Our methodology made the process of calibration more effective than the history matching by Oliveira et al. ((2017a) J. Petrol. Sci. Eng. 153, 111–122). Cross-influence was minimized, making the history matching more objective and efficient, and consequently, the production forecasts more reliable.

2018 ◽  
Author(s):  
Hojjat Khani ◽  
Hamidreza Hamdi ◽  
Long Nghiem ◽  
Zhangxing Chen ◽  
Mario Costa Sousa

1979 ◽  
Vol 81 ◽  
pp. 69-72 ◽  
Author(s):  
Manabu Yuasa ◽  
Gen'ichiro Hori

A new approach to the planetary theory is examined under the following procedure: 1) we use a canonical perturbation method based on the averaging principle; 2) we adopt Charlier's canonical relative coordinates fixed to the Sun, and the equations of motion of planets can be written in the canonical form; 3) we adopt some devices concerning the development of the disturbing function. Our development can be applied formally in the case of nearly intersecting orbits as the Neptune-Pluto system. Procedure 1) has been adopted by Message (1976).


2018 ◽  
Vol 31 (20) ◽  
pp. 8573-8588 ◽  
Author(s):  
Matz A. Haugen ◽  
Michael L. Stein ◽  
Elisabeth J. Moyer ◽  
Ryan L. Sriver

Understanding future changes in extreme temperature events in a transient climate is inherently challenging. A single model simulation is generally insufficient to characterize the statistical properties of the evolving climate, but ensembles of repeated simulations with different initial conditions greatly expand the amount of data available. We present here a new approach for using ensembles to characterize changes in temperature distributions based on quantile regression that more flexibly characterizes seasonal changes. Specifically, our approach uses a continuous representation of seasonality rather than breaking the dataset into seasonal blocks; that is, we assume that temperature distributions evolve smoothly both day to day over an annual cycle and year to year over longer secular trends. To demonstrate our method’s utility, we analyze an ensemble of 50 simulations of the Community Earth System Model (CESM) under a scenario of increasing radiative forcing to 2100, focusing on North America. As previous studies have found, we see that daily temperature bulk variability generally decreases in wintertime in the continental mid- and high latitudes (>40°). A more subtle result that our approach uncovers is that differences in two low quantiles of wintertime temperatures do not shrink as much as the rest of the temperature distribution, producing a more negative skew in the overall distribution. Although the examples above concern temperature only, the technique is sufficiently general that it can be used to generate precise estimates of distributional changes in a broad range of climate variables by exploiting the power of ensembles.


2021 ◽  
Vol 412 ◽  
pp. 49-72
Author(s):  
R. Leticia Corral Bustamante ◽  
Antonino H. Pérez ◽  
Alfredo L. Márquez

A new approach to evaluate the Newtonian flow between concentric rotating spheres is introduced in this paper. A general analytic solution to the problem is deduced using a perturbation method that takes into account the primary and secondary flows produced between the spheres, as well as an alternative analytical method. In order to exemplify the results of the previous analysis, six particular cases were studied. The results of the perturbation method show that under certain circumstances the secondary flow is no negligible, as is usually considered, but it is comparable to the value of the primary one. While the analytical method allows us to simulate the flow with results very similar to those of other authors.


Sign in / Sign up

Export Citation Format

Share Document