scholarly journals Productivity analysis for a horizontal well with multiple reorientation fractures in an anisotropic reservoir

Author(s):  
Mingxian Wang ◽  
Zifei Fan ◽  
Lun Zhao ◽  
Guoqiang Xing ◽  
Wenqi Zhao ◽  
...  

Reorientation fractures may be formed in soft and shallow formations during fracturing stimulation and then affect well productivity. The principal focus of this study is on the productivity analysis for a horizontal well with multiple reorientation fractures in an anisotropic reservoir. Combining the nodal analysis technique and fracture-wing method, a semi-analytical model for a horizontal well with multiple finite-conductivity reorientation fractures was established to calculate its dimensionless productivity index and derivative for production evaluation. A classic case in the literature was selected to verify the accuracy of our semi-analytical solution and the verification indicates this new solution is reliable. Results show that for a fixed fracture configuration the dimensionless productivity index of the proposed model first goes up and then remains constant with the increase of fracture conductivity, and optimal fracture conductivity can be determined on derivative curves. Strong permeability anisotropy is a negative factor for well production and the productivity index gradually decreases with the increase of anisotropic factor. As principal fracture angle goes up, horizontal well’s productivity index increases correspondingly. However, the effect of reoriented fracture angle on the productivity index is not as strong as that of principal fracture angle. When reoriented fracture angle is smaller than principal fracture angle, reoriented factor should be as low as possible to achieve optimal productivity index. Meanwhile, well productivity index rises up with the increase of fracture number and fracture spacing, but the horizontal well has optimal reorientation fracture number and fracture spacing to get the economical productivity. Furthermore, the influence of the rotation of one central reorientation fracture on productivity index is weaker than that caused by the rotation of one external reorientation fracture. In addition, the asymmetrical distribution of one or more reorientation fractures slightly affects the productivity index when fracture conductivity is high enough.

2021 ◽  
Author(s):  
Evgeniy Viktorovich Yudin ◽  
George Aleksandrovich Piotrovskiy ◽  
Maria Vladimirovna Petrova ◽  
Alexey Petrovich Roshchektaev ◽  
Nikita Vladislavovich Shtrobel

Abstract Requirements of targeted optimization are imposed on the hydraulic fracturing operations carried out in the conditions of borderline economic efficiency of fields taking into account geological and technological features. Consequently, the development of new analytical tools foranalyzing and planning the productivity of fractured wells, taking into account the structuralfeatures of the productive reservoir and inhomogeneous distribution of the fracture conductivity, is becoming highly relevant. The paper proposes a new approach of assessing the vertical hydraulic fracture productivityin a rectangular reservoir in a pseudo-steady state, based on reservoir resistivity concept described in the papers of Meyer et al. However, there is a free parameter in the case of modeling the productivity of a hydraulic fracture by the concept. The parameter describes the distribution of the inflow along the plane of the fracture. This paper presents a systematic approach to determining of the parameter. The resulting model allows to conduct an assessment of the influence of various complications in the fracture on the productivity index. During the research a method of determining the free parameter was developed,it was based on the obtained dependence of the inflow distribution on the coordinate along the fracture of finite conductivity. The methodology allowed to refine existent analytical solution of the Meyer et al. model, which, in turn, allowed to assess the influence of different fracture damages in the hydraulic fracture on the productivity index of the well. The work includes the cases of the presence of fracture damages at the beginning and at the end of the fracture. A hydraulic fracture model was built for each of the types of damages, it was based on the developed method, and also the solution of dimensionless productivity ratio was received. The results of the obtained solution were confirmed by comparison with the numerical solutions of commercial simulators and analytical models available in the literature. The advantage of the methodology is the resulting formulas for well productivity are relatively simple, even for exotic cases ofvariable conductivity fractures. The approaches and algorithms described in the paper assume the calculation of the productivity of a hydraulic fracture with variable conductivity and the presence of other complicatingfactors.The methodology of the paper can be used for analysis and diagnosis problems with formation hydraulic fracturing. The efficiency of the calculations allows using the presented methodology to solve inverse problems of determining the efficiency of the hydraulic fracturing operation.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4232 ◽  
Author(s):  
Guoqiang Xing ◽  
Shuhong Wu ◽  
Jiahang Wang ◽  
Mingxian Wang ◽  
Baohua Wang ◽  
...  

A fractured horizontal well is an effective technology to obtain hydrocarbons from tight reservoirs. In this study, a new semi-analytical model for a horizontal well intercepted by multiple finite-conductivity reorientation fractures was developed in an anisotropic rectangular tight reservoir. Firstly, to establish the flow equation of the reorientation fracture, all reorientation fractures were discretized by combining the nodal analysis technique and the fracture-wing method. Secondly, through coupling the reservoir solution and reorientation fracture solution, a semi-analytical solution for multiple reorientation fractures along a horizontal well was derived in the Laplace domain, and its accuracy was also verified. Thirdly, typical flow regimes were identified on the transient-pressure curves. Finally, dimensionless pressure and pressure derivative curves were obtained to analyze the effect of key parameters on the flow behavior, including fracture angle, permeability anisotropy, fracture conductivity, fracture spacing, fracture number, and fracture configuration. Results show that, for an anisotropic rectangular tight reservoir, horizontal wells should be deployed parallel to the direction of principal permeability and fracture reorientation should be controlled to extend along the direction of minimum permeability. Meanwhile, the optimal fracture number should be considered for economic production and the fracture spacing should be optimized to reduce the flow interferences between reorientation fractures.


SPE Journal ◽  
2018 ◽  
Vol 23 (05) ◽  
pp. 1539-1551 ◽  
Author(s):  
Nadav Sorek ◽  
Jose A. Moreno ◽  
Ryan N. Rice ◽  
Guofan Luo ◽  
Christine Ehlig-Economides

Summary Hydraulic fractures propagate perpendicular to the horizontal-well axis whenever the drilling direction is parallel to the minimum-principal-stress direction. However, operators frequently drill horizontal wells parallel to lease boundaries, resulting in hydraulic-fracture vertical planes slanted at angles less than 90° from the well axis. The stimulated-rock-volume (SRV) dimensions are defined by fracture height, well length, and fracture length multiplied by the sine of the angle between fracture planes and the horizontal-well axis (fracture angle). The well productivity index (PI) under boundary-dominated flow (BDF) is given by the PI for one fully penetrating fracture multiplied by the number of fractures. An extension of the unified-fracture-design (UFD) approach for rectangular drainage areas enables determination of the unique number of fractures that will maximize well productivity under BDF conditions given the formation permeability, proppant mass, fracture angle, and well spacing. Fracture length and width vary depending on the fracture angle, but the total-propped-fracture volume remains constant. Because the likely reason for drilling at an angle to the minimum-stress direction is to better cover a lease area with north/south and east/west boundaries, the smallest fracture angle will be 45°, corresponding to northwest/southeast or northeast/southwest minimum-stress direction. This results in the need to lengthen fractures by at most 40% to preserve the SRV for a given horizontal-well length and spacing. For the same sufficiently large proppant mass, this will reduce fracture conductivity by the same factor. However, because the flow area has increased, the result will be greater well productivity. This study shows a simple strategy for designing wells to maximize productivity even when not drilled in the minimum-stress direction.


SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1270-1287 ◽  
Author(s):  
Junlei Wang ◽  
Yunsheng Wei ◽  
Wanjing Luo

Summary The classical optimization design dependent on a single-fracture (SF) assumption is widely applied in performance optimization for hydraulically fractured wells. The objective of this paper is to extend the optimal design to a complex fracture network to achieve the maximum productivity index (PI). In this work, we established a pseudosteady-state (PSS) productivity model of a fractured horizontal well, which has the flexibility of accounting for the complexity of fracture-network dimensions. A semianalytical solution was then presented in the generalized matrix format through coupling reservoir- and fracture-flowing systems. Subsequently, several published studies on the PSS productivity calculation of a SF were used to verify this model, and a 3D transient numerical simulation of an orthogonal fracture network was used to perform further verification. We show that results from our solutions agree very well with those benchmarked results. On the basis of the model, we provide a detailed analysis on the productivity enhancement of the fracture-network/optimization work flow using unified fracture design (UFD). The results show the following: The PI is determined by fracture conductivity and complexity (network size, spacing, and configuration), and it is a function of fracture complexity and conductivity when the influence of proppant volume is not considered. Under the constraint of a given amount of proppant known as UFD, the maximum PI would be achieved when the best balance between network complexity and conductivity was obtained. It is more advantageous to minimize fracture complexity by creating relatively simple-geometry fractures with smaller network size and larger fracture spacing in the condition of small and intermediate proppant numbers. It should be the design goal to generate a complex network by creating relatively complex-geometry fractures with larger network size and smaller fracture spacing in the condition of a large proppant number. Increasing fracture complexity could reduce the optimal requirement of fracture conductivity. The proposed approach can provide guidance for a network-hydraulic-fracturing design for an optimal completion.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhiwang Yuan ◽  
Li Yang ◽  
Yingchun Zhang ◽  
Rui Duan ◽  
Xu Zhang ◽  
...  

For deep-water faulted sandstone reservoirs, the general practice is to design long horizontal wells improving well productivity. During the project implementation stage, well tests are performed on all drilled wells to evaluate well productivity accurately. Furthermore, multisize chokes are often utilized in a shorten test time for loosen formation, high test cost, and high well productivity. Nevertheless, the conventional productivity evaluation approach cannot accurately evaluate the well test productivity and has difficulty in determining the underneath pattern. As a result, the objective of this paper is to determine a productivity evaluation method for multisize chokes long horizontal well test in deep-water faulted sandstone reservoir. This approach introduces a productivity model for long horizontal wells in faulted sandstone reservoir. It also includes the determination of steady-state test time and the productivity evaluation method for multisize chokes. In this paper, the EGINA Oilfield, a deep-water faulted sandstone reservoir, located in West Africa was chosen as the research target. Based on Renard and Dupuy’s steady-state equation, the relationship between the productivity index per meter and the length of horizontal section was derived. Consequently, this relationship is used to determine the productivity pattern for long horizontal wells with the same geological features, which can provide more accurate productivity evaluations for tested wells and forecast the well productivity for untested wells. After implementing this approach on the EGINA Oilfield, the determined relationship is capable to accurately evaluate the test productivity for long horizontal wells in reservoirs with similar characteristics and assist in examination and treatment for horizontal wells with abnormal productivity.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Hongfei Ma ◽  
Wenqi Zhao ◽  
Meng Sun ◽  
Xiaodong Wang ◽  
Lun Zhao ◽  
...  

The volume fracturing technique has been widely used to improve the productivity of ultralow-permeability reservoirs. This paper presents a new semianalytical model to simulate the pressure transient and production behaviour of finite conductivity vertical fractured wells with stimulated reservoir volume (SRV) in heterogeneous reservoirs. The model is based on the five-linear flow model, the Warren-Root model, and fracture conductivity influence function. The model is validated by comparing its results with a numerical model. One novelty of this model is its consideration of three different kinds of production prediction models. Constant rate, constant pressure, and compound working systems are taken into account. This paper illustrates the effects of the SRV size and shape, mobility ratio, initial flow rate, limiting wellbore pressure, and hydraulic fracture parameters under different working systems. Results show that the SRV and parameters of fractures have a significant influence on long-term well performance. Moreover, the initial rate can extend the constant rate period by 418%, and limiting wellbore pressure can effectively improve the cumulative recovery rate by 23%. Therefore, this model can predict long-term wells’ behaviour and provide practical guiding significance for hydraulic fracturing design.


2021 ◽  
Author(s):  
Danial Zeinabady ◽  
Behnam Zanganeh ◽  
Sadeq Shahamat ◽  
Christopher R. Clarkson

Abstract The DFIT flowback analysis (DFIT-FBA) method, recently developed by the authors, is a new approach for obtaining minimum in-situ stress, reservoir pressure, and well productivity index estimates in a fraction of the time required by conventional DFITs. The goal of this study is to demonstrate the application of DFIT-FBA to hydraulic fracturing design and reservoir characterization by performing tests at multiple points along a horizontal well completed in an unconventional reservoir. Furthermore, new corrections are introduced to the DFIT-FBA method to account for perforation friction, tortuosity, and wellbore unloading during the flowback stage of the test. The time and cost efficiency associated with the DFIT-FBA method provides an opportunity to conduct multiple field tests without delaying the completion program. Several trials of the new method were performed for this study. These trials demonstrate application of the DFIT-FBA for testing multiple points along the lateral of a horizontal well (toe stage and additional clusters). The operational procedure for each DFIT-FBA test consists of two steps: 1) injection to initiate and propagate a mini hydraulic fracture and 2) flowback of the injected fluid on surface using a variable choke setting on the wellhead. Rate transient analysis methods are then applied to the flowback data to identify flow regimes and estimate closure and reservoir pressure. Flowing material balance analysis is used to estimate the well productivity index for studied reservoir intervals. Minimum in-situ stress, pore pressure and well productivity index estimates were successfully obtained for all the field trials and validated by comparison against a conventional DFIT. The new corrections for friction and wellbore unloading improved the accuracy of the closure and reservoir pressures by 4%. Furthermore, the results of flowing material balance analysis show that wellbore unloading might cause significant over-estimation of the well productivity index. Considerable variation in well productivity index was observed from the toe stage to the heel stage (along the lateral) for the studied well. This variation has significant implications for hydraulic fracture design optimization, particularly treatment pressures and volumes.


2021 ◽  
Author(s):  
Lakshi Konwar ◽  
Bader Alhammadi ◽  
Ebrahim Alawainati ◽  
Ajithkumar Panicker

Abstract The objective of this paper is to present the comparative results of comprehensive analysis of horizontal well productivity and completion performance with vertical wells drilled and completed within same time window in the Mauddud reservoir in the Bahrain Oil Field. The study also focuses on performance evaluation of horizontal wells drilled in different areas of the field. Key reservoir risks and uncertainties associated with horizontal wells are identified, and contingency and mitigation plans are devised to address them. Besides controlling gas production, the benefits of using cemented horizontal wells over vertical wells are highlighted based on performance of recently completed workovers and economic evaluation. Reservoir and well performance are analyzed using a variety of analytical techniques such as well productivity index (PI), productivity improvement factor (PIF), normalized productivity improvement factor (PIFn), well productivity coefficient (Cwp), in conjunction with a statistical distribution function to reflect the average and most likely values. In addition, average oil/gas/water production, cumulative production, reserves, and estimated ultimate recovery (EUR) are compared for both vertical and horizontal wells using decline curve analysis. Furthermore, economics are evaluated for tight spacing drilling with vertical wells, as well as horizontal cemented wells, to optimize future development of Mauddud reservoir. Based on the evaluation, it is inferred that the average horizontal well outperforms a vertical well in terms of production rate, PI, PIF, reserves, and EUR in the field except in waterflood areas. Based on average cumulative oil, reserves and EUR, and well productivity coefficient, overall performance of horizontal wells are better in the GI area in comparison their counterparts in the North/South areas of the Mauddud reservoir, where the dominant mechanism is strong water drive. High gas and water production in horizontal wells are attributed to open-hole completions of the wells and the possibility of poor cementing. A trial has been completed recently in a few horizontal wells using cased-hole cemented completion with selected perforations, resulting in improved oil rates and the drastic reduction of gas to oil ratio. Furthermore, two new cased-hole cemented horizontal wells are planned in 2021 as a trial. A detailed cost-benefit analysis using a net present value concept is performed, leading to a rethink of future development strategies with a mix of both vertical as well as horizontal wells in the GI area. Using the dimensionless correlations and distribution functions, the productivity and PIF of new horizontal wells to be drilled in any area can be predicted during early prognosis given the values of average reservoir permeability, well length, and fluid properties. This study can be used as a benchmark for the development of a thin oil column with a large and expanding gas cap under crestal gas injection using both vertical and horizontal wells.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2449 ◽  
Author(s):  
Guoqiang Xing ◽  
Mingxian Wang ◽  
Shuhong Wu ◽  
Hua Li ◽  
Jiangyan Dong ◽  
...  

Many oil wells in closed reservoirs continue to produce in the pseudo-steady-state flow regime for a long time. The principal objective of this work is to investigate the characteristics of two key pseudo-steady-state parameters—pseudo-steady-state constant (bDpss) and pseudo-skin factor (S)—for a well penetrated by a fracture with an azimuth angle (θ) in an anisotropic reservoir. Firstly, a general analytical pressure solution for a finite-conductivity fracture with or without an azimuth angle in an anisotropic rectangular reservoir was developed by using the point-source function and spatial integral method, and two typical cases were employed to verify this solution. Secondly, with the asymptotic analysis method, the expressions of pseudo-steady-state constant and pseudo-skin factor were obtained on the basis of their definitions, and the effects of permeability anisotropy, fracture azimuth angle, fracture conductivity and reservoir shape on them were discussed in detail. Results show that all the bDpss-θ and S-θ curves are symmetric around the vertical line, θ = 90° and form a hump or groove shape. The optimized fracture direction in an anisotropic reservoir is perpendicular to the principal permeability axis. Furthermore, a new formula to calculate pseudo-skin factor was successfully proposed based on these two parameters’ relationship. Finally, as an application of pseudo-steady-state constant, a set of Blasingame format rate decline curves for the proposed model were established.


Sign in / Sign up

Export Citation Format

Share Document