anisotropic factor
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 16)

H-INDEX

7
(FIVE YEARS 2)

2022 ◽  
Vol 22 (1) ◽  
pp. 95-103
Author(s):  
Laysa Teles Vollbrecht ◽  
Adriano Reis Prazeres Mascarenhas ◽  
Rafael Rodolfo de Melo ◽  
Maúcha Fernanda de Mota Lima ◽  
Ricardo Pereira Soteil ◽  
...  

Abstract This work aimed to evaluate the effect of heat treatment on the physical properties of wood from Buchenavia sp. The heat treatments were carried out at temperatures of 180 °C and 200 °C for 2 h. Apparent density (AD), basic density (BD), porosity (Ф), mass loss, longitudinal (LS), radial (RS), tangential (TS) and volumetric (VS) shrinkages and anisotropic factor (AF) were determined. The lowest values of basic density (0.67 g cm-3), apparent density (0.77 gcm-3), and porosity (43.3%) were observed for the wood treated at a temperature of 200 °C. Mass losses increased with increasing temperature and the highest values were observed under the condition of 200 °C (9.3%). The LS and AF was not affected by heat treatments. The mean values for RS (3.1%), TS (5.1%), and VS (9.1%) were reduced after the performance of heat treatments at temperatures of 180°C and 200°C, which did not differ from each other. The thermal treatments were able to reduce the dimensional instability of Buchenavia sp. Thermal treatments enhance the use of less prestigious Amazonian woods in the civil construction market.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bing Guan ◽  
Haiyang Yu ◽  
Wei Song ◽  
Jaeho Choi

For the free-space optical (FSO) communication system, the spatial coherence of a laser beam is influenced obviously as it propagates through the atmosphere. This loss of spatial coherence limits the degree to which the laser beam is collimated or focused, resulting in a significant decrease in the power level of optical communication and radar systems. In this work, the analytic expressions of wave structure function for plane and spherical wave propagation through anisotropic non-Kolmogorov turbulence in a horizontal path are derived. Moreover, the new expressions for spatial coherence radius are obtained considering different scales of atmospheric turbulence. Using the newly obtained expressions for the spatial coherent radius, the effects of the inner scales and the outer scales of the turbulence, the power law exponent, and the anisotropic factor are analyzed. The analytical simulation results show that the wave structure functions are greatly influenced by the power law exponent α , the anisotropic factor ζ , the turbulence strength σ ~ R 2 , and the turbulence scales. Moreover, the spatial coherence radiuses are also significantly affected by the anisotropic factor ζ and the turbulence strength σ ~ R 2 , while they are gently influenced by the power law exponent α and the inner scales of the optical waves.


Author(s):  
Debing Zhang ◽  
Limin Yu ◽  
Erbing Xue ◽  
Xianmei Zhang ◽  
Haijun Ren

Abstract In the nowadays and future fusion devices such as ITER and CFETR, as the use of various heating schemes, the parallel and perpendicular temperature of plasmas can be different; this temperature anisotropy may have significant effects on the turbulence. In this work, the anomalous transport driven by the ion temperature gradient instability is investigated in an anisotropic deuterium-tritium (D-T) plasma. The anisotropic factor $\alpha$, defined as the ratio of perpendicular temperature to parallel temperature, is introduced to describe the temperature anisotropy in the equilibrium distribution function of D. The linear dispersion relation in local kinetic limit is derived, and then numerically evaluated to study the dependence of mode frequency on the anisotropic factor $\alpha$ and the proportion for T particle $\vareT$ by choosing three sets of typical parameters, denoted as the cyclone base case (CBC), ITER and CFETR cases. Based on the linear results, the mixing length model approximation is adopted to analyze the quasi-linear particle and energy fluxes for D and T. It is found that choosing small $\alpha$ and large $\vareT$ is beneficial for the confinement of particle and energy for D and T. This work may be helpful for the estimation of turbulent transport level in the ITER and CFETR devices.


2021 ◽  
Author(s):  
Bhila Oliver Mnisi ◽  
Evans Moseti Benecha ◽  
Meriam Malebo Tibane

The structural, magnetic, electronic and elastic properties of A15 X3Ru (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) binary alloys are investigated using first-principles density functional theory (DFT) methods. Ru-based alloys have attracted remarkable research interest due to their unique properties, which make them suitable for high-temperature structural applications. In this chapter, the properties of several A15 Ru-based alloys are investigated in order to select the best suitable alloy/s for aerospace application. Heats of formation are calculated to determine the thermodynamic stability of the materials. Knowledge of the values of elastic constants is essential for understanding the mechanical properties of the materials. From our calculated elastic constants, the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, melting temperature, anisotropic factor and the ratio B/G are determined. The electronic density of states are calculated and discussed. Lastly, the magnetic properties of A15 X3Ru alloys are studied. Thermodynamically stable Mn3Ru possesses high-magnetic moment compared to other X3Ru alloys, these results could pave way to experimental realization (synthesis) of Mn3Ru material.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 2803-2810
Author(s):  
Zhihua Xiong ◽  
Chenyu Zhao ◽  
Yuqing Liu ◽  
Haohui Xin ◽  
Yang Meng

2021 ◽  
Vol 13 (13) ◽  
pp. 2535
Author(s):  
Haolu Shang ◽  
Yixing Ding ◽  
Huadong Guo ◽  
Guang Liu ◽  
Xiaoyu Liu ◽  
...  

To study the Earth’s energy balance and to extend exoplanet research, the Earth’s outward radiative flux and its radiance in the Moon-based view were simulated according to the Earth–Sun–Moon geometry model, with the help of ERA5. A framework was developed to identify the angular distribution model (ADM) of Earth’s surface and its scene types, according to the surface and atmospheric data from ERA5. Our simulation shows that the specific viewing geometry controls the periodical variations in the Moon-based view radiative flux and its radiance, which reflect the orbital period of the Moon. The seasonal variations in shortwave and longwave radiative flux follow the energy balance in general, which is probably influenced by the Earth albedo. The derived global ADM would help to identify the anisotropic factor of observations at DSCOVR. Our simulations prove that Moon-based observation is a valuable source for Earth observation and that the orbital information of exoplanets could be derived from the radiance observation.


2020 ◽  
Vol 75 (12) ◽  
pp. 1077-1084
Author(s):  
Bhawan Jyoti ◽  
Shakti Pratap Singh ◽  
Mohit Gupta ◽  
Sudhanshu Tripathi ◽  
Devraj Singh ◽  
...  

AbstractThe elastic, thermal and ultrasonic properties of zirconium nanowire (Zr-NW) have been investigated at room temperature. The second and third order elastic constants (SOECs and TOECs) of Zr-NW have been figured out using the Lennard–Jones Potential model. SOECs have been used to find out the Young’s modulus, bulk modulus, shear modulus, Poisson’s ratio, Pugh’s ratio, Zener anisotropic factor and ultrasonic velocities. Further these associated parameters of Zr-NW have been utilized for the evaluation of the Grüneisen parameters, thermal conductivity, thermal relaxation time, acoustic coupling constants and ultrasonic attenuation. On the basis of the above analyzed properties of Zr-NW, some characteristics features of the chosen nanowire connected with ultrasonic and thermo-physical parameters have been discussed.


2020 ◽  
Vol 17 (09) ◽  
pp. 2050140
Author(s):  
M. Farasat Shamir ◽  
I. Fayyaz

In this paper, we have presented the Einstein–Maxwell equations which are described by the spherically symmetric spacetime in the presence of charge by exploiting the Tolman–Kuchowicz spacetime. The corresponding field equations are constructed and the form of charge distribution is chosen to be [Formula: see text], where [Formula: see text] is a constant quantity. We also find the values of unknown constants from junction conditions and discuss the behavior of effective energy density, effective radial and tangential pressure and anisotropic factor with two viable [Formula: see text] models. We examine the physical stability of charged stellar structure through energy conditions, causality and stability condition. We use modified form of TOV equation for anisotropic charged fluid sphere to analyze the equilibrium condition. In this work, we model the compact star candidate SAXJ 1808.4 – 3658 and study the compactness level and anisotropic behavior corresponding to the variation of physical parameters which are involved in [Formula: see text] models. Further, we evaluate some important properties such as mass-radius ratio compactness factor and surface redshift. It is depicted from this study that the obtained solutions provide strong evidences for more realistic and viable stellar model.


2020 ◽  
Vol 34 (21) ◽  
pp. 2050200
Author(s):  
A. Afaq ◽  
Abu Bakar ◽  
Muhammad Shoaib ◽  
Rashid Ahmed ◽  
Anila Asif

The Half Heusler alloy (HHA) MnCrP has been studied theoretically for structural, elasto-mechanical and phonon properties. The structure is optimized and the calculated structural parameters are close to the literature. This optimized data is used to estimate three independent second-order cubic elastic constants [Formula: see text], [Formula: see text] and [Formula: see text]. The mechanical stability criteria are explored by these constants and further used to estimate the elastic moduli; Young’s, bulk and shear modulus. The mechanical parameters like Poisson’s ratio, Pugh’s ratio, anisotropic factor, Cauchy pressure, shear constant, Lame’s constants, Kleinman parameter are also calculated and discussed. Discussions reveal the ductile nature, ionic behavior, anisotropic nature and mechanical stability of MnCrP. The metallic nature, compressibility, stiffness and interatomic forces of material are also described. Furthermore, the Debye temperature, where the collective vibrations shifts to an independent thermal vibrations, is also calculated. Longitudinal and transverse sound velocities are also obtained to investigate the phonon modes of oscillation. These phonon modes confirm the stability of the alloy as no negative phonon frequencies in the phonon-dispersion curves. These curves are used to estimate the reststrahlen band where light reflects 100% and the suitability of material is checked for Far Infrared (FIR), photographic, optoelectronic devices and sensors.


2020 ◽  
Vol 7 (12) ◽  
pp. 3201-3208
Author(s):  
Hongjing Wen ◽  
Shichao Song ◽  
Fei Xie ◽  
Bin Wang ◽  
Jian Xu ◽  
...  

A 3D laser printing technique for realizing unprecedented stereo-chiral-luminescent silver nanostructures was developed to achieve a record-high fluorescent anisotropic factor.


Sign in / Sign up

Export Citation Format

Share Document