scholarly journals Novel low-cost control system for large high-speed corn precision planters

Author(s):  
Youqiang Ding ◽  
◽  
Li Yang ◽  
Dongxing Zhang ◽  
Tao Cui ◽  
...  
2012 ◽  
Vol 150 ◽  
pp. 144-147 ◽  
Author(s):  
Wei Yu Zhang ◽  
Ying Ruan ◽  
Xiao Yan Diao ◽  
Huang Qiu Zhu

To fulfil the objective of high speed, high precision and intelligence in the modern equipment and advanced manufacturing industry, the magnetic bearing is requested to have small volume, low cost and low consumption. In this paper, an AC-DC three-degree-of-freedom hybrid magnetic bearing (AC-DC-3DOF-HMB) is studied, which integrates radial bearing and axial bearing in one of the magnetic bearing. The configuration and principle of AC-DC-3DOF-HMB are expounded, and the mathematical models of suspension forces are given. Then based on the function block diagram of AC-DC-3DOF-HMB control system, its hardware and software configuration are designed. The experiment results show that the rotor can be suspended stably with three degrees of freedom and has a good performance in anti- interference, and the feasibility of the control system design can be verified.


2012 ◽  
Vol 619 ◽  
pp. 51-55
Author(s):  
Heng Chen ◽  
Yan Bing Ni

This paper deals with a control method research and trajectory planning of parallel mechanisms. Control system scheme which is based on PC and motion controller has high openness, high degree of modularization and support for non-linear mapping relationship between operating space and joint space of parallel mechanisms with high flexibility and low cost. PC and NI motion controller and LabVIEW constituted hardware core and software platform of control system, respectively. Hardware technology of control system contained hardware selection, control circuit design and interface technology; software technology of control system developed application programs layer, core control layer and drive functions layer to realize core control functions of finding home, single-step or continuous movement and micro adjustment, which was based on hardware principle. Trajectory has been planned for a typical high speed parallel robot.


2020 ◽  
Vol 16 (31) ◽  
pp. 103-127
Author(s):  
Pablo Cuartas-Restrepo ◽  
Natalia Gaviria-Gómez ◽  
Julian Galvez-Serna

This work shows the engineering process carried out for the design of a low cost control system for an astronomical observatory. The work describes the implementation to adapt the equipment of the observatory to a Master Control System (MCS) and be able to use it remotely. The instruments and software required for the integration of the equipment as part of a robotic observatory are also described.


2011 ◽  
Vol 383-390 ◽  
pp. 1542-1548
Author(s):  
Zhi Bin Li

This paper describes the design and implementation of a low-cost robot control system based on a Programmable Logic Controller (PLC). The robot is a 2-DoF (Degrees of Freedom) purely translational mechanism, which has potential application in food and electronics industry for high speed pick-and-place operation. Combined with a conveyor belt, it can make 3-DoF purely translation motion. In this paper, the inverse kinematics, forward kinematics, singularity, and workspace analysis are presented. The control system architecture and software design is also introduced. The prototype is exhibited at last.


Sign in / Sign up

Export Citation Format

Share Document