master control
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 21 (3) ◽  
pp. 24-29
Author(s):  
Marek FEDOR ◽  
◽  
Daniela PERDUKOVA ◽  

In the presented work a new identification method of difficult measured internal quantities of IM, such as components of magnetic flux vector and electromagnetic torque, is proposed. Commonly measurable quantities of IM like stator currents, stator voltage frequency and mechanical angular speed are used for identification to determine a feedback effect of the rotor flux vector on vector of stator currents of IM. Based on this feedback it is also possible to identify actual value of the rotor resistance, which can alter during IM operation. This has a significant impact on precision of identified quantities as well as on master control of IM. Stability of the identification structure is guaranteed by position of roots of characteristic equation of its linear transfer function. Results obtained from simulation measurements confirm quality, effectivity, feasibility, and robustness of the proposed identification method.


2021 ◽  
Vol 13 (8) ◽  
pp. 196
Author(s):  
Francesco Chiti ◽  
Romano Fantacci ◽  
Roberto Picchi ◽  
Laura Pierucci

The creation of the future quantum Internet requires the development of new systems, architectures, and communications protocols. As a matter of fact, the optical fiber technology is affected by extremely high losses; thus, the deployment of a quantum satellite network (QSN) composed of quantum satellite repeaters (QSRs) in low Earth orbit would make it possible to overcome these attenuation problems. For these reasons, we consider the design of an ad hoc quantum satellite backbone based on the Software-Defined Networking (SDN) paradigm with a modular two-tier Control Plane (CP). The first tier of the CP is embedded into a Master Control Station (MCS) on the ground, which coordinates the entire constellation and performs the management of the CP integrated into the constellation itself. This second tier is responsible for entanglement generation and management on the selected path. In addition to defining the SDN architecture in all its components, we present a possible protocol to generate entanglement on the end-to-end (E2E) path. Furthermore, we evaluate the performance of the developed protocol in terms of the latency required to establish entanglement between two ground stations connected via the quantum satellite backbone.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Chunhao Han ◽  
Li Liu ◽  
Zhiwu Cai ◽  
Yuting Lin

AbstractThe BeiDou Navigation Satellite System (BDS) is essentially a precise time measurement and time synchronization system for a large-scale space near the Earth. General relativity is the basic theoretical framework for the information processing in the master control station of BDS. Having introduced the basic conceptions of relativistic space–time reference systems, the space–time references of BDS are analyzed and the function and acquisition method of the Earth Orientation Parameters (EOP) are briefly discussed. The basic space reference of BDS is BeiDou Coordinate System (BDCS), and the time standard is the BDS Time (BDT). BDCS and BDT are the realizations of the Geocentric Terrestrial Reference System (GTRS) and the Terrestrial Time (TT) for BDS, respectively. The station coordinates in the BDCS are consistent with those in International Terrestrial Reference Frame (ITRF)2014 at the cm–level and the difference in scale is about $$1.1 \times 10^{ - 8}$$ 1.1 × 10 - 8 . The time deviation of BDT relative to International Atomic Time (TAI) is less than 50 ns and the frequency deviation is less than $$2 \times 10^{ - 14}$$ 2 × 10 - 14 . The Geocentric Celestial Reference System (GCRS) and the solar Barycentric Celestial Reference System (BCRS) are also involved in the operation of BDS. The observation models for time synchronization and precise orbit determination are established within the GCRS framework. The coordinate transformation between BDCS and GCRS is consistent with the International Earth Rotation and Reference Systems Service (IERS). In the autonomous operation mode without the support of the ground master control station, Earth Orientation Parameters (EOP) is obtained by means of long-term prediction and on-board observation. The observation models for the on-board astrometry should be established within the BCRS framework.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3751
Author(s):  
Zhaoyang Qi ◽  
Jianyu Li ◽  
Wenqing Xu ◽  
Wenyue Zhu ◽  
Fengying Sun ◽  
...  

Using a solar radiometer is an effective approach for improving the remote sensing of solar irradiance distribution and atmospheric composition. Long-term development of a solar scanning radiometer enables frequent and reliable measurement of atmospheric parameters such as the water vapor column and aerosol optical properties. However, the discrete wavelength radiometer has encountered a bottleneck with respect to its insufficient spectral resolution and limited observation waveband, and it has been unable to satisfy the needs of refined and intelligent on-site experiments. This study proposes a solar-skylight spectroradiometer for obtaining visible and near-IR fine spectrum with two types of measurement: direct-sun irradiance and diffuse-sky radiance. The instrument adopts distributed control architecture composed of the ARM-Linux embedded platform and sensor networks. The detailed design of the measuring light-path, two-axis turntable, and master control system will be addressed in this study. To determine all coefficients needed to convert instrument outputs to physical quantities, integrating sphere and Langley extrapolation methods are introduced for diffuse-sky and direct-sun calibration, respectively. Finally, the agreement of experimental results between spectroradiometers and measuring benchmarks (DTF sun-photometer, microwave radiometer, and Combined Atmospheric Radiative Transfer simulation) verifies the feasibility of the spectroradiometer system, and the radiation information of feature wavelengths can be used to retrieve the characteristics of atmospheric optics.


2021 ◽  
Vol 1043 (3) ◽  
pp. 032035
Author(s):  
Yang Lin ◽  
Xia Jiang ◽  
Li Rong ◽  
Xiao Shiman ◽  
Wu Huasheng ◽  
...  

2020 ◽  
Vol 24 (4) ◽  
pp. 61-74
Author(s):  
Krzysztof Łapiński ◽  
Piotr Sołowiej

AbstractIn 2020, a fully automated hydropower plant was launched on the Guber River near the town of Kotkowo. The plant is operated by a master control and measurement system, which collects data to evaluate the operation of selected systems of the facility. The number and location of sensors controlling the parameters of hydroelectric systems are selected accordingly, to collect complete information from all sensors and analyze the operation of hydroelectric systems in real time. In addition, storing all the controlled parameters allows analyzing the plant’s operation over longer periods. This work presents the possibilities of this measurement system, as well as the measurement results obtained in the tested object. Analyzing the operation of the control and measurement system as well as the collected and archived data will be the foundation for a simulation model of a hydropower plant. The model will be helpful in optimizing the operation of existing hydroelectric plants in terms of energy production per unit volume of water, and in designing new ones on existing barrage.


Development ◽  
2020 ◽  
Vol 147 (24) ◽  
pp. dev185827
Author(s):  
Timothy Grocott ◽  
Estefania Lozano-Velasco ◽  
Gi Fay Mok ◽  
Andrea E. Münsterberg

ABSTRACTUnderstanding how complex organ systems are assembled from simple embryonic tissues is a major challenge. Across the animal kingdom a great diversity of visual organs are initiated by a ‘master control gene’ called Pax6, which is both necessary and sufficient for eye development. Yet precisely how Pax6 achieves this deeply homologous function is poorly understood. Using the chick as a model organism, we show that vertebrate Pax6 interacts with a pair of morphogen-coding genes, Tgfb2 and Fst, to form a putative Turing network, which we have computationally modelled. Computer simulations suggest that this gene network is sufficient to spontaneously polarise the developing retina, establishing the first organisational axis of the eye and prefiguring its further development. Our findings reveal how retinal self-organisation may be initiated independently of the highly ordered tissue interactions that help to assemble the eye in vivo. These results help to explain how stem cell aggregates spontaneously self-organise into functional eye-cups in vitro. We anticipate these findings will help to underpin retinal organoid technology, which holds much promise as a platform for disease modelling, drug development and regenerative therapies.


Author(s):  
S. Tselepis ◽  
T. Romanos ◽  
Barutti W. Bohrer ◽  
L Sardi ◽  
A. Sorokin ◽  
...  

2020 ◽  
Vol 16 (31) ◽  
pp. 103-127
Author(s):  
Pablo Cuartas-Restrepo ◽  
Natalia Gaviria-Gómez ◽  
Julian Galvez-Serna

This work shows the engineering process carried out for the design of a low cost control system for an astronomical observatory. The work describes the implementation to adapt the equipment of the observatory to a Master Control System (MCS) and be able to use it remotely. The instruments and software required for the integration of the equipment as part of a robotic observatory are also described.


2020 ◽  
Vol 14 (1) ◽  
pp. 21-28
Author(s):  
Arya Bhaskara Adiprabowo ◽  
Bambang Muharto ◽  
Hana Nabila Anindita ◽  
Nur Azimah Salehah ◽  
Dwi Husodo Prasetyo ◽  
...  

Biogas Power Plant (PLT) from palm oil mill effluent had been commissioned by a team from the Center of Technology for the Energy Resources and Chemical Industry, Agency for the Assessment and Application of Technology (PTSEIK-BPPT). The biogas power plant is located in PTPN V Kampar, Riau Province. A PLC (Programmable Logic Controller) has been implemented to support the operation of biogas power plant. Proper sensor selection has been done for each measurement applications. A computer and mimic panel is used as an interface for the operation of PLC. The master control system communicates with the slave control systems and Human Machine Interface (HMI) by means of ethernet communication protocol. Commissioning phase is carried out for 2 hours with a load of 450 kW. Instrumentation and control system is able to measure important variables such as fluctuation in methane numbers, pressures, and biogas flow rate to check the suitability of biogas supply in accordance to gas engine specification.


Sign in / Sign up

Export Citation Format

Share Document