scholarly journals Audio Hiding based on Wavelet Transform and Linear Predictive Coding

2016 ◽  
Vol 42 (1) ◽  
pp. 30-37
Author(s):  
Jamal Hasoon ◽  
Saad Al-Saad

In this work an efficient method for hiding a speech in audio is proposed. The features of secretspeech is extracted with LPC (Linear Predictive Coding), and these parameters embedded in audio inchaotic order. Discrete Wavelet Transform (DWT) is applied on audio frames to split the signal in high andlow frequencies. The embedding parameters are embedded in high frequency. The stego audio isperceptually indistinguishable from the equivalent cover audio. The proposed method allows hiding a sameduration of speech (secret) and audio (cover). The stego audio is subjected to objective tests such signal to noiseratio (SNR), signal to noise ratio segmental (SNRseg), Segmental Spectral SNR, Log Likelihood Ratio (LLR)and Correlation (Rxy) to determine the similarity with original audio.

This paper aims in presenting a thorough comparison of performance and usefulness of multi-resolution based de-noising technique. Multi-resolution based image denoising techniques overcome the limitation of Fourier, spatial, as well as, purely frequency based techniques, as it provides the information of 2-Dimensional (2-D) signal at different levels and scales, which is desirable for image de-noising. The multiresolution based de-noising techniques, namely, Contourlet Transform (CT), Non Sub-sampled Contourlet Transform (NSCT), Stationary Wavelet Transform (SWT) and Discrete Wavelet Transform (DWT), have been selected for the de-noising of camera images. Further, the performance of different denosing techniques have been compared in terms of different noise variances, thresholding techniques and by using well defined metrics, such as Peak Signal-to-Noise Ratio (PSNR) and Root Mean Square Error (RMSE). Analysis of result shows that shift-invariant NSCT technique outperforms the CT, SWT and DWT based de-noising techniques in terms of qualititaive and quantitative objective evaluation


The research constitutes a distinctive technique of steganography of image. The procedure used for the study is Fractional Random Wavelet Transform (FRWT). The contrast between wavelet transform and the aforementioned FRWT is that it comprises of all the benefits and features of the wavelet transform but with additional highlights like randomness and partial fractional value put up into it. As a consequence of the fractional value and the randomness, the algorithm will give power and a rise in the surveillance layers for steganography. The stegano image will be acquired after administrating the algorithm which contains not only the coated image but also the concealed image. Despite the overlapping of two images, any diminution in the grade of the image is not perceived. Through this steganographic process, we endeavor for expansion in surveillance and magnitude as well. After running the algorithm, various variables like Mean Square Error (MSE) and Peak Signal to Noise ratio (PSNR) are deliberated. Through the intended algorithm, a rise in the power and imperceptibility is perceived and it can also support diverse modification such as scaling, translation and rotation with algorithms which previously prevailed. The irrefutable outcome demonstrated that the algorithm which is being suggested is indeed efficacious.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
A. Nazifah Abdullah ◽  
S. H. K. Hamadi ◽  
M. Isa ◽  
B. Ismail ◽  
A. N. Nanyan ◽  
...  

Partial discharge (PD) measurement is an essential to detect and diagnose the existence of the PD. However, this measurement has faced noise disturbance in industrial environments. Thus, PD analysis system using discrete wavelet transform (DWT) denoising technique via Laboratory Virtual Instrument Engineering Workbench (LabVIEW) software is proposed to distinguish noise from the measured PD signal. In this work, the performance of denoising process is analyzed based on calculated mean square error (MSE) and signal to noise ratio (SNR). The result is manipulated based on Haar, Daubechies, Coiflets, Symlets and Biorthogonal type of mother wavelet with different decomposition levels. From the SNR results, all types of the mother wavelet are suitable to be used in denoising technique since the value of SNR is in large positive value. Therefore, further studies were conducted and found out that db14, coif3, sym5 and bior5.5 wavelets with least MSE value are considered good to be used in the denoising technique. However, bior5.5 wavelet is proposed as the most optimum mother wavelet due to consistency of producing minimum value of MSE and followed by db14.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Shanshan Chen ◽  
Bensheng Qiu ◽  
Feng Zhao ◽  
Chao Li ◽  
Hongwei Du

Compressed sensing (CS) has been applied to accelerate magnetic resonance imaging (MRI) for many years. Due to the lack of translation invariance of the wavelet basis, undersampled MRI reconstruction based on discrete wavelet transform may result in serious artifacts. In this paper, we propose a CS-based reconstruction scheme, which combines complex double-density dual-tree discrete wavelet transform (CDDDT-DWT) with fast iterative shrinkage/soft thresholding algorithm (FISTA) to efficiently reduce such visual artifacts. The CDDDT-DWT has the characteristics of shift invariance, high degree, and a good directional selectivity. In addition, FISTA has an excellent convergence rate, and the design of FISTA is simple. Compared with conventional CS-based reconstruction methods, the experimental results demonstrate that this novel approach achieves higher peak signal-to-noise ratio (PSNR), larger signal-to-noise ratio (SNR), better structural similarity index (SSIM), and lower relative error.


Author(s):  
V.F. Telezhkin ◽  
◽  
B.B. Saidov ◽  
P.А. Ugarov ◽  
A.N. Ragozin ◽  
...  

In the present work, processing of an electro cardio signal using a wavelet transform is consi-dered. In electrocardiography, various digital signal-processing techniques are used to detect, extract, and analyze the various components of an electrocardiogram. Among them, the wavelet transform technique gives promising results in the analysis of the time-frequency characteristics of the electrocardiogram components. The urgency of solving the problem of improving the quality of life of people with the help of early diagnosis and timely treatment of various cardiac diseases is obvious. The process of automated analysis of a huge database of electrocardiographic data is especially important. Wavelet analysis can be successfully used to smooth and remove noise in the ECG signal. Electrocardiogram signal, cleaned from noise components, looks clearer, while its volume is from 10 to 5% of the original signal, which largely solves the problem of storing cardiac records. Aim. Development of an algorithm for threshold processing of wavelet coefficients and filtering of an electrocardiography signal. Materials and methods. Cardiograms were taken for analysis. Then they were digitized and entered into a computer for processing. A program was written in the MATLAB environment that implements continuous and discrete wavelet transform. Results. The work shows the result of filtering the ECG signal with the addition of noise with a signal-to-noise ratio of 35 and 45 dB using the decomposition levels N = 2, N = 3, N = 4. Conclusion. Based on the analysis of the data obtained, it can be concluded that the second level of decomposition is the most optimal for filtering the ECG signal. With an increase in the level of decomposition, the output ratio decreases, at the level N = 4 the output signal-to-noise almost does not exceed the input one, therefore, the filtering becomes ineffective. The correlation coefficient to the fourth level is significantly reduced, which means a significant increase in the distortion introduced by the filtering algorithm.


Author(s):  
Zahraa Yaseen Hasan ◽  
Rusul Altaie ◽  
Hawraa Abd Al-kadum Hassan

<span id="docs-internal-guid-a16efc88-7fff-5adf-531b-900845049730"><span>More recent digital camera introduced enormous facilities for users from different specifications to take images easily, but the user still wants to improve these images, which it contains different problems like ambiguous and colors is not clear, because not enough light, cloudy weather, bright light, dark region and it's taken from remote distances. This paper aims to use a new approach for fusion images by using a wavelet coefficient based on PSNR and SNR measure (the technical result) instead of using the max, min, average values, and so on in the previous methods. The wavelet coefficient of each sub band is compared between them, the sub band had a value higher of measure is selected for fusion. Firstly, a discrete wavelet transform has been applied to the medical images with 2level. Then, the peak signal to noise ratio and signal to noise ratio measures have been computed for each sub-band. After that PSNR and SNR values have been compared for each sub-band to opposite sub-band and it selected the better value of measures. Secondly, PSNR and SNR values have been gathered for each image. Then select the image that contains value higher PSNR and lower value of SNR for purpose fusion. Finally, perform an inverse discrete wavelet on the fused image to transform it from the frequency to the spatial domain. The results of the work showed that the wavelet coefficient is used to preserve the image details and removed the noise. PSNR value of 1level of dwt is higher than 2level. This paper makes the image more clearer and informative than the original images. </span></span>


2020 ◽  
Vol 38 (1A) ◽  
pp. 83-87
Author(s):  
Manal K. Oudah ◽  
Rula S. Khudhair ◽  
Saad M. Kaleefah ◽  
Aqeela N. Abed

Recently the Discrete-Wavelet-Transform (DWT) has been represented as signal processing powerful tool to separate the signal into its band frequency components. In this paper, improvement of the steganography techniques by hiding the required message into the suitable frequency band is presented. The results show that the increase of the message length will reduce the Peak Signal to Noise Ratio (PSNR), while the PSNR increases with the increasing the DWT levels. It should be noted that the PSNR reduction was from -13.8278 to -17.77208 when increasing the message length from 161 to 505 characters. In this context, the PSNR is increased from -13.8278 to 7.0554 and from -17.7208 to 1.7901 when the DWT increased from level (1) to level (2).


2011 ◽  
Vol 383-390 ◽  
pp. 408-413
Author(s):  
Fei Du ◽  
Tian Bing Ma

Based on mean filtering with good denoising capability for white gaussian noise and wavelet transform with high frequency denoising and singularity detection capabilities, a new method combining mean filtering and wavelet transform is proposed for extracting weak periodic impact signal in heavy noise background. Three different thresholds of wavelet transform are used to extract feature. The simulation results show that the wavelet filtering with improved threshold has the best effect. The SNR(Signal to Noise Ratio) are greatly improved and RMSE(Root Mean Square Error) are greatly reduced.This method has an excellent effect on extracting weak periodic impact feature and has very strong practicability.


2011 ◽  
Vol 63-64 ◽  
pp. 327-332
Author(s):  
Xiai Chen ◽  
Ping Jie Huang ◽  
Di Bo Hou ◽  
Xu Sheng Kang ◽  
Guang Xin Zhang ◽  
...  

Terahertz spectra of terbutaline sulfate in the range of 0.2 to 2.2 THz was obtained by THz time-domain spectroscopy. The discrete wavelet transform was applied to de-noising terahertz waveforms. The signal was decomposed into five layers by wavelet decomposition, and then the high-frequency noise signal was eliminated by wavelet reconstruction. Another try was through calculating the standard deviation of the noise signal by the 1-th level signals which got from wavelet decomposition, and then the soft threshold and hard threshold de-noising method was employed respectively. The robustness of these wavelet de-noising methods was testified in this paper, and the absorption and refraction spectra of terbutaline sulfate were got at last. The result of experiment indicts that wavelet can enhance the signal to noise ratio of system and this paper provides a new way for the detection of terbutaline sulfate.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 416
Author(s):  
C Vimala ◽  
P Aruna Priya

The enhancement of degraded images using different wavelet transform techniques are presented in this paper. The performance of the wavelet techniques is analysed in terms of Peak Signal to Noise Ratio values and Root Means Square error. The Double Density Dual Tree Discrete Wavelet Transform technique is mainly focused for analysis and the results are compared with discrete wavelet transform and the Double Density DWT.  


Sign in / Sign up

Export Citation Format

Share Document