scholarly journals Analytical design of controllers for discrete-continuous systems with linear control

2021 ◽  
Vol 12 (2) ◽  
pp. 121-135
Author(s):  
Irina Viktorovna Rasina ◽  
Oles Vladimirovich Fesko ◽  
Oleg Valerievich Usenko

The study focuses on a certain kind of discrete-continuous systems (DCS): the linear hybrid DCS with state-dependent coefficients. The authors proposed a problem similar to the analytical design of optimal controllers (ADOC). For this study, we generalized the Krotov sufficient optimality conditions. The paper includes several examples.

2021 ◽  
Vol 12 (2) ◽  
pp. 105-119
Author(s):  
Ирина Викторовна Расина ◽  
Олесь Владимирович Фесько ◽  
Олег Валерьевич Усенко

Рассматривается одна из разновидностей дискретно/непрерывных систем — линейные по управлению ДНС с коэффициентами, зависящими от состояния, относящиеся к гибридным системам. Формулируется аналог задачи аналитического конструирования регуляторов (АКОР). Для исследования используется обобщение достаточных условий оптимальности Кротова. Приводятся иллюстративные примеры.


2020 ◽  
Vol 26 ◽  
pp. 37 ◽  
Author(s):  
Elimhan N. Mahmudov

The present paper studies the Mayer problem with higher order evolution differential inclusions and functional constraints of optimal control theory (PFC); to this end first we use an interesting auxiliary problem with second order discrete-time and discrete approximate inclusions (PFD). Are proved necessary and sufficient conditions incorporating the Euler–Lagrange inclusion, the Hamiltonian inclusion, the transversality and complementary slackness conditions. The basic concept of obtaining optimal conditions is locally adjoint mappings and equivalence results. Then combining these results and passing to the limit in the discrete approximations we establish new sufficient optimality conditions for second order continuous-time evolution inclusions. This approach and results make a bridge between optimal control problem with higher order differential inclusion (PFC) and constrained mathematical programming problems in finite-dimensional spaces. Formulation of the transversality and complementary slackness conditions for second order differential inclusions play a substantial role in the next investigations without which it is hardly ever possible to get any optimality conditions; consequently, these results are generalized to the problem with an arbitrary higher order differential inclusion. Furthermore, application of these results is demonstrated by solving some semilinear problem with second and third order differential inclusions.


2017 ◽  
Vol 7 (2) ◽  
pp. 191-199
Author(s):  
Vladimir Srochko ◽  
◽  
Vladimir Antonik ◽  
Elena Aksenyushkina ◽  

Author(s):  
Nazih Abderrazzak Gadhi

In this work, some counterexamples are given to refute some results in the paper by Kohli (RAIRO-Oper. Res. 53, 1617-1632, 2019). We correct the faulty in some of his results.


2020 ◽  
Vol 45 (2) ◽  
pp. 79-95
Author(s):  
Krzysztof Hałas ◽  
Eugeniusz Krysiak ◽  
Tomasz Hałas ◽  
Sławomir Stępień

AbstractMethods for solving non-linear control systems are still being developed. For many industrial devices and systems, quick and accurate regulators are investigated and required. The most effective and promising for nonlinear systems control is a State-Dependent Riccati Equation method (SDRE). In SDRE, the problem consists of finding the suboptimal solution for a given objective function considering nonlinear constraints. For this purpose, SDRE methods need improvement.In this paper, various numerical methods for solving the SDRE problem, i.e. algebraic Riccati equation, are discussed and tested. The time of computation and computational effort is presented and compared considering selected nonlinear control plants.


2021 ◽  
Vol 20 ◽  
pp. 98-107
Author(s):  
Alessandro Gerlinger Romero ◽  
Luiz Carlos Gadelha De Souza

The satellite attitude and orbit control system (AOCS) can be designed with success by linear control theory if the satellite has slow angular motions and small attitude maneuver. However, for large and fast maneuvers, the linearized models are not able to represent all the perturbations due to the effects of the nonlinear terms present in the dynamics and in the actuators (e.g., saturation). Therefore, in such cases, it is expected that nonlinear control techniques yield better performance than the linear control techniques. One candidate technique for the design of AOCS control law under a large maneuver is the State-Dependent Riccati Equation (SDRE). SDRE entails factorization (that is, parameterization) of the nonlinear dynamics into the state vector and the product of a matrix-valued function that depends on the state itself. In doing so, SDRE brings the nonlinear system to a (nonunique) linear structure having state-dependent coefficient (SDC) matrices and then it minimizes a nonlinear performance index having a quadratic-like structure. The nonuniqueness of the SDC matrices creates extra degrees of freedom, which can be used to enhance controller performance, however, it poses challenges since not all SDC matrices fulfill the SDRE requirements. Moreover, regarding the satellite's kinematics, there is a plethora of options, e.g., Euler angles, Gibbs vector, modified Rodrigues parameters (MRPs), quaternions, etc. Once again, some kinematics formulation of the AOCS do not fulfill the SDRE requirements. In this paper, we evaluate the factorization options (SDC matrices) for the AOCS exploring the requirements of the SDRE technique. Considering a Brazilian National Institute for Space Research (INPE) typical mission, in which the AOCS must stabilize a satellite in three-axis, the application of the SDRE technique equipped with the optimal SDC matrices can yield gains in the missions. The initial results show that MRPs for kinematics provides an optimal SDC matrix.


Sign in / Sign up

Export Citation Format

Share Document