High-Sensitive Quantification of Cryptosporidium in River Water Samples Using a Real-time Reverse Transcription-Polymerase Chain Reaction

2010 ◽  
Vol 46 (4) ◽  
pp. 181-189 ◽  
Author(s):  
NAOHIRO KISHIDA ◽  
ICHIRO FURUKAWA ◽  
TOSHIRO KUROKI ◽  
AKIKO INOMATA ◽  
SHINJI IZUMIYAMA ◽  
...  
2014 ◽  
Vol 70 (3) ◽  
pp. 555-560 ◽  
Author(s):  
Naohiro Kishida ◽  
Naohiro Noda ◽  
Eiji Haramoto ◽  
Mamoru Kawaharasaki ◽  
Michihiro Akiba ◽  
...  

We describe an assay for simple and accurate quantification of human enteric adenoviruses (EAdVs) in water samples using a recently developed quantification method named microfluidic digital polymerase chain reaction (dPCR). The assay is based on automatic distribution of reaction mixture into a large number of nanolitre-volume reaction chambers and absolute copy number quantification from the number of chambers containing amplification products on the basis of Poisson statistics. This assay allows absolute quantification of target genes without the use of standard DNA. Concentrations of EAdVs in Japanese river water samples were successfully quantified by the developed dPCR assay. The EAdVs were detected in seven of the 10 samples (1 L each), and the concentration ranged from 420 to 2,700 copies/L. The quantified values closely resemble those by most probable number (MPN)-PCR and real-time PCR when standard DNA was validated by dPCR whereas they varied substantially when the standard was not validated. Accuracy and sensitivity of the dPCR was higher than those of real-time PCR and MPN-PCR. To our knowledge, this is the first study that has successfully quantified enteric viruses in river water using dPCR. This method will contribute to better understanding of existence of viruses in water.


2006 ◽  
Vol 175 (4S) ◽  
pp. 485-486
Author(s):  
Sabarinath B. Nair ◽  
Christodoulos Pipinikas ◽  
Roger Kirby ◽  
Nick Carter ◽  
Christiane Fenske

Sign in / Sign up

Export Citation Format

Share Document