Development of Economical Gas-tight Casing Connection for Low Pressure Gas Field Application

2011 ◽  
Author(s):  
Jiandong Wang ◽  
Lineng Yang ◽  
Shengyin Song ◽  
Xiaoming Yi ◽  
Dongfeng Li ◽  
...  

2011 ◽  
Author(s):  
Jiandong Wang ◽  
Lineng Yang ◽  
Shengyin Song ◽  
Xiaoming Yi ◽  
Dongfeng Li ◽  
...  


2012 ◽  
Vol 450-451 ◽  
pp. 1536-1539
Author(s):  
Cui Ping Nie ◽  
Deng Sheng Ye

Abstract: Usually we pay more attention on how to improve gas well cementing quality in engineering design and field operations, and there are so many studies on cement agents but few researches on cement slurry injection technology. The field practice proved that conventional cementing technology can not ensure the cementing quality especially in gas well and some abnormal pressure wells. Most of the study is concentrated on cement agents and some cementing aspects such as wellbore condition, casing centralization etc. All the factors analysis on cementing quality has pointed out that a combination of good agents and suitable measurements can improve cementing quality effectively. The essential factor in cementing is to enhance the displacement efficiency, but normal hole condition and casing centralization are the fundamental for cementing only. Pulsing cementing is the technology that it can improve the displacement efficiency especially in reservoir well interval, also it can shorten the period from initial to ultimate setting time for cement slurry or improve thickening characteristics, and then to inhibit the potential gas or water channeling. Based on systematically research, aiming at improving in 7″ liner cementing, where there are multi gas reservoirs in long interval in SiChuan special gas field, well was completed with upper 7″ liner and down lower 5″ liner, poor cementing bonding before this time. So we stressed on the study of a downhole low frequency self-excited hydraulic oscillation pulsing cementing drillable device and its application, its successful field utilization proved that it is an innovative tool, and it can improve cementing quality obviously.



2013 ◽  
Vol 27 ◽  
pp. 37-41
Author(s):  
Palash K Saha ◽  
Mahbubur Rahman

This paper demonstrates a method of recovering the low pressure vapor from the condensate tanks in the Bibiyana gas field. This method uses a gas ejector as a device to compress the low pressure natural gas from the condensate tanks to an intermediate pressure, which would then be fed into the intermediated stage of the existing vapor recovery unit. Thus the natural gas will be saved which would have been otherwise flared. The amount of tank vapor is estimated by different methods, which shows a significant amount of gas is now being flared. Flaring of gas is a problem which entails both economic loss and environmental concerns. It is estimated that, on the average 190 MSCFD tank vapor can be recovered using the proposed method involving a gas ejector. Thus yearly saving would be about 68 MMSCF of natural gas. The equivalent heat energy saving is about 74.55X109 BTU. In terms of greenhouse gas emissions, this project will reduce about 1,112 tons of CO2 emissions per year in the gas plant locality. DOI: http://dx.doi.org/10.3329/jce.v27i1.15856 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 1, June 2012: 37-41



2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Haocai Huang ◽  
Liang Huang ◽  
Wei Ye ◽  
Shijun Wu ◽  
Canjun Yang ◽  
...  

Isobaric gas-tight hydrothermal samplers, with the ability to maintain pressure, can be used to keep in situ chemical and biological sample properties stable. The preloading pressure of the precharged gas is a major concern for isobaric gas-tight hydrothermal samplers, especially when the samplers are used at different sampling depths, where the in situ pressures and ambient temperatures vary greatly. The most commonly adopted solution is to set the preloading pressure for gas-tight samplers as 10% of the hydrostatic pressure at the sampling depth, which might emphasize too much on pressure retention; thereby, the sample volume may be unnecessarily reduced. The pressure transition of the precharged gas was analyzed theoretically and modeled at each sampling stage of the entire field application process. Additionally, theoretical models were built to represent the pressure and volume of hydrothermal fluid samples as a function of the preloading pressure of the precharged gas. Further, laboratory simulation and examination approaches were also adopted and compared, in order to obtain the volume change of the sample and accumulator chambers. By using theoretical models and the volume change of the two chambers, the optimized preloading pressure for the precharged gas was obtained. Under the optimized preloading pressure, the in situ pressure of the fluid samples could be maintained, and their volume was maximized. The optimized preloading pressure obtained in this study should also be applicable to other isobaric gas-tight hydrothermal samplers, by adopting a similar approach to pressure maintenance.



2012 ◽  
Vol 616-618 ◽  
pp. 96-99
Author(s):  
Fang Lu ◽  
Xin Jiang Du ◽  
Zhi Jun Mao ◽  
Yan Zhou ◽  
Yue Bin Cui ◽  
...  

Sulige Gas Field is located in the Suligemiao area, northwest of the Ordos Basin, with a prospecting area of about 4×104km2. Owing to the strong heterogeneity in the SQW Block, one of exploration blocks in the Sulige Gas Field, remains reservoir characteristics of the gas field: lithologic gas reservoirs with characteristics of “three low” (low pressure, low permeability and low abundance). The He8 member of the Shihezi formation, the major exploration target, is deposited in braided river environment. The conventional logging data is very useful to indentify different facies and to estimate gas potential. The technology of discrimination with sedimentary facies and gas layers using logging data is established in this paper. We use the technology combining with AVO and other exploration methods to pick out 4 favorable exploration target areas with the success rate of more than 80%.



2011 ◽  
Author(s):  
Md Amanullah ◽  
Mohammed K. AlArfaj ◽  
Ziad Abdullrahman Al-abdullatif


1994 ◽  
Author(s):  
W.C. Dyck ◽  
R.M. Moore
Keyword(s):  


Author(s):  
A. Pokhylko

The article presented information about specific of geological conditions depleted oil and gas fields, which has Remaining Oil and Gas in Place. The reasons of abnormally low pressure nascency in the deposit has been analyzed. The article presents information about influence of geodynamic processes and structural and tectonics of Earth crust to formation pressure. The information about availability of initial abnormally low formation pressure in Ukrainian Oil and Gas-Condensate fields has been written. Supposition of nascence the abnormally low formation pressure in difficult oil/water/gas saturation geological formation has been analyzed. The drop of pressure in of initial formation has been analyzed and researched. The article presented that drop of pressure gradient in main Ukrainian oil and gas fields is equal to the value of abnormally low formation pressure.The problems of considerable remaining Oil and Gas in with abnormally low pressure in Ukrainian oil and gas field deposit has been analyzed. The information about oil and gas reservoir conditions of depleted field and brown fields in Ukraine has been analyzed.The plot of the formation pressure gradient decreasing for Chornukhynske, Denysivske, Solokhivske, Druzheliubivske, Tymofiivske and Yablunivske fields has been presented. The drop of pressure to abnormally low in Chornukhynske, Denysivske, Solokhivske, Druzheliubivske, Tymofiivske and Yablunivske fields has been established. The problems of drilling and cementing in the well with abnormally low pressure has been describe. Difficult geological conditions in Ukrainian oil and gas field deposit has been analyzed.The article shows the importance to control parameters of all technological liquids, especially density of drilling and cementing liquid in a time of drilling well with abnormally low pressure. The article shows the aspect of the using of lightweight grouting solutions for mounting wells with abnormally low reservoir pressures, the importance of controlling the contamination of the bottom zone of the formation and preventing the occurrence of hydraulic fracturing during cementing.



1977 ◽  
Vol 29 (05) ◽  
pp. 552-560
Author(s):  
A.E. Trimble ◽  
W.E. DeRose


Sign in / Sign up

Export Citation Format

Share Document