A Case Study : Innovative Open Hole Well Completion Provides Superior Results in Tigh Gas Formation in Jilin District, China

2013 ◽  
Author(s):  
Wang Feng ◽  
Changyu Liu ◽  
Yingan Zhang ◽  
Yong Wang ◽  
Hai Liu ◽  
...  
2013 ◽  
Author(s):  
Wang Feng ◽  
Changyu Liu ◽  
Yingan Zhang ◽  
Yong Wang ◽  
Hai Liu ◽  
...  

2021 ◽  
Author(s):  
Sviatoslav Iuras ◽  
Samira Ahmad ◽  
Chiara Cavalleri ◽  
Yernur Akashev

Abstract Ukraine ranks the third largest gas reserves in Europe. Gas production is carried out mainly from the Dnieper-Donets Basin (DDB). A gradual decline in reserves is forcing Ukraine to actively search for possible sources to increase reserves by finding bypassed gas intervals in existing wells or exploration of new prospects. This paper describes 3 case studies, where advanced pulsed neutron logging technology has shown exceptional value in gas-bearing layer identification in different scenarios. The logging technology was applied for formation evaluation. The technology is based on the neutron interaction with the minerals and the fluids contained in the pore space. The logging tool combines measurements from multiple detectors and spacing for self-compensated neutron cross-capture section (sigma) and hydrogen index (HI), and the Fast Neutron Cross Section (FNXS) high-energy neutron elastic cross section rock property. Comprehensive capture and inelastic elemental spectroscopy are simultaneously recorded and processed to describe the elemental composition and the matrix properties, reducing the uncertainties related to drilling cuttings analysis, and overall, the petrophysical evaluation combined with other log outputs. The proposed methodology was tested in several wells, both in open hole and behind casing. In the study we present its application in three wells from different fields of the DDB. The log data acquisition and analysis were performed across several sandstone beds and carbonates formation with low porosities (<10%), in various combinations of casing and holes sizes. The results showed the robustness and effectiveness of using the advanced pulsed neutron logging (PNL) technologies in multiple cases: Case Study A: Enabling a standalone cased hole evaluation and highlighting new potential reservoir zones otherwise overlooked due to absence of open hole logs. Case Study B: Finding by-passed hydrocarbon intervals that were missed from log analysis based on conventional open hole logs for current field operator. Case Study C: Identifying gas saturated reservoirs and providing solid lithology identification that previously was questioned from drilling cuttings in an unconventional reservoir.


2021 ◽  
Author(s):  
Mayir Mamtimin ◽  
◽  
Jeffrey Crawford ◽  

Due to the volumetric nature of the physics and the measurement, traditional gamma-gamma density tools measure an average bulk density of the formation. However, a bulk measurement is not adequate for certain applications where a more detailed resolution of a radial density profile is necessary. In this paper, a new approach of gamma spectral analysis is introduced focusing on the main Compton scattering angles. Several energy windows are linked to the unique radial layers based on scattering angles and location of interaction. As a result, the density of multiple layers can be calculated. The paper first outlines the main principles and analytical structures to formulate two methods to measure layer densities. Then computer simulation tools are used to simulate realistic tool configuration and measurement response to validate and benchmark efficacies of the outlined methods. Finally, a case study is presented to demonstrate the applicability of these methods using laboratory data. The paper is concluded with a list of other possible applications such as open-hole density and behind-pipe evaluation where layer density can provide more details for the analysis.


2013 ◽  
Author(s):  
Mohammad T. Al-Khalifa ◽  
Abdulrahman T. Mishkhes ◽  
Keshab N. Baruah ◽  
Nashi M. Al-Otaibi
Keyword(s):  

2010 ◽  
Author(s):  
Efejera Akpodiate Ejofodomi ◽  
Malcolm Yates ◽  
Robert Downie ◽  
Tarik Itibrout ◽  
O.A. Catoi

2017 ◽  
Author(s):  
Syed Munib Ullah Farid ◽  
Hassaan Ahmed ◽  
Shahid Hameed Mangi ◽  
Syed Dost Ali ◽  
Ijaz Ahmed ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
André Alonso Fernandes ◽  
Eduardo Schnitzler ◽  
Fabio Fabri ◽  
Leandro Grabarski ◽  
Marcos Vinicius Barreto Malfitani ◽  
...  

Abstract This is a case study of a presalt well that required the use of 3 different MPD techniques to achieve its goals. The well was temporary abandoned when conventional techniques failed to reach the final depth. Total fluid losses in the reservoir section required changing the well design and its completion architecture. The new open hole intelligent completion design had to be used to deliver the selective completion in this challenging scenario. From the hundreds of wells drilled in the Santos basin presalt, there are some wells with tight or no operational drilling window. In order to drill these wells different MPD techniques are used. In most cases, the use of Surface Backpressure (SBP) technique is suitable for drilling the wells to its final depth. For the more complex cases, when higher fluid loss rates occur, the use of SBP and Pressurized Mud Cap Drilling (PMCD) enables the achievement of the drilling and completion objectives. After the temporary abandonment of this specific well in 2018, the uncertainty of the pore pressure could not ensure that the SBP and PMCD techniques would be applicable when reentering the well. To avoid difficult loss control operations, the completion team changed the intelligent completion design to include a separated lower completion, enabling its installation with the MPD system. Besides the previously used MPD techniques, the integrated final project considered an additional technique, Floating Mud Cap Drilling (FMCD), as one of the possible contingencies for the drilling and completion phases. Well reentry and drilling of the remaining reservoir section included the use all the previously mentioned MPD techniques (SBP, PMCD and FMCD). The lower completion deployment utilized the FMCD technique to isolate the formation quickly and efficiently, without damaging the reservoir. The planning and execution of the well faced additional difficulties due to the worldwide pandemic and personnel restrictions. The success from the operation was complete with no safety related events and within the planned budget. At the end, the execution team delivered a highly productive well with an intelligent completion system fully functional, through an integrated and comprehensive approach. MPD use on deepwater wells is relatively new. Different operators used several approaches and MPD techniques to ensure safety and success during wells constructions over the last decade. This paper demonstrates the evolution of MPD techniques usage on deepwater wells.


2019 ◽  
Author(s):  
Mary Garza ◽  
Joshua Baumbach ◽  
James Prosser ◽  
Spencer Pettigrew ◽  
Kirsten Elvig
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document