Evaluation of Multistage Hydraulic Fracturing Techniques for Production Optimization in Naturally Fractured Reservoirs Using Coupled Geomechanics Fracture and Flow Model

Author(s):  
Theerapat Suppachoknirun ◽  
Azra N. Tutuncu ◽  
Hossein Kazemi
SPE Journal ◽  
2017 ◽  
Vol 22 (04) ◽  
pp. 1064-1081 ◽  
Author(s):  
Sanbai Li ◽  
Dongxiao Zhang ◽  
Xiang Li

Summary A fully coupled thermal/hydromechanical (THM) model for hydraulic-fracturing treatments is developed in this study. In this model, the mixed finite-volume/finite-element method is used to solve the coupled system, in which the multipoint flux approximation L-method is used to calculate interelement fluid and heat flux. The Gu et al. (2011) crossing criterion is extended to a 3D scenario to delineate the crossing behaviors as hydraulic fractures meet inclined natural fractures. Moreover, the modified Barton et al. (1985) model proposed by Asadollahi et al. (2010) is used to estimate the fracture aperture and model the shear-dilation effect. After being (partially) verified by means of comparison with results from the literature, the developed model is used to investigate complex-fracture-network propagation in naturally fractured reservoirs. Numerical experiments show that the key factors controlling the complexity of the induced-fracture networks include stress anisotropy, injection rate, natural-fracture distribution (fracture-dip angle, strike angle, spacing, density, and length), fracture-filling properties (the degree of cementation and permeability), fracture-surface properties (cohesion and friction angle), and tensile strength of intact rock. It is found that the smaller the stress anisotropy and/or the lower the injection rate, the more complex the fracture network; a high rock tensile strength could increase the possibility of the occurrence of shear fractures; and under conditions of large permeability of fracture filling combined with small cohesive strength and friction coefficient, shear slip could become the dominant mechanism for generating complex-fracture networks. The model developed and the results presented can be used to understand the propagation of complex-fracture networks and aid in the design and optimization of hydraulic-fracturing treatments.


Sign in / Sign up

Export Citation Format

Share Document