Development and Application of an Efficient Assisted History Matching Workflow Using Novel Algorithms

Author(s):  
Mohamed Shams
2014 ◽  
Author(s):  
G. A. Carvajal ◽  
M. Maucec ◽  
A. Singh ◽  
A. Mahajan ◽  
J. Dhar ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4290
Author(s):  
Dongmei Zhang ◽  
Yuyang Zhang ◽  
Bohou Jiang ◽  
Xinwei Jiang ◽  
Zhijiang Kang

Reservoir history matching is a well-known inverse problem for production prediction where enormous uncertain reservoir parameters of a reservoir numerical model are optimized by minimizing the misfit between the simulated and history production data. Gaussian Process (GP) has shown promising performance for assisted history matching due to the efficient nonparametric and nonlinear model with few model parameters to be tuned automatically. Recently introduced Gaussian Processes proxy models and Variogram Analysis of Response Surface-based sensitivity analysis (GP-VARS) uses forward and inverse Gaussian Processes (GP) based proxy models with the VARS-based sensitivity analysis to optimize the high-dimensional reservoir parameters. However, the inverse GP solution (GPIS) in GP-VARS are unsatisfactory especially for enormous reservoir parameters where the mapping from low-dimensional misfits to high-dimensional uncertain reservoir parameters could be poorly modeled by GP. To improve the performance of GP-VARS, in this paper we propose the Gaussian Processes proxy models with Latent Variable Models and VARS-based sensitivity analysis (GPLVM-VARS) where Gaussian Processes Latent Variable Model (GPLVM)-based inverse solution (GPLVMIS) instead of GP-based GPIS is provided with the inputs and outputs of GPIS reversed. The experimental results demonstrate the effectiveness of the proposed GPLVM-VARS in terms of accuracy and complexity. The source code of the proposed GPLVM-VARS is available at https://github.com/XinweiJiang/GPLVM-VARS.


2006 ◽  
Author(s):  
Shawket G. Ghedan ◽  
Adrian P. Gibson ◽  
Ilhan Sener ◽  
Ozgur Eylem Gunal ◽  
Alexander Diab ◽  
...  

2013 ◽  
Author(s):  
Marko Maucec ◽  
Ajay Pratap Singh ◽  
Gustavo A Carvajal ◽  
Seyed Mohammad Mirzadeh ◽  
Steven Patton Knabe ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 626
Author(s):  
Jiyuan Zhang ◽  
Bin Zhang ◽  
Shiqian Xu ◽  
Qihong Feng ◽  
Xianmin Zhang ◽  
...  

The relative permeability of coal to gas and water exerts a profound influence on fluid transport in coal seams in both primary and enhanced coalbed methane (ECBM) recovery processes where multiphase flow occurs. Unsteady-state core-flooding tests interpreted by the Johnson–Bossler–Naumann (JBN) method are commonly used to obtain the relative permeability of coal. However, the JBN method fails to capture multiple gas–water–coal interaction mechanisms, which inevitably results in inaccurate estimations of relative permeability. This paper proposes an improved assisted history matching framework using the Bayesian adaptive direct search (BADS) algorithm to interpret the relative permeability of coal from unsteady-state flooding test data. The validation results show that the BADS algorithm is significantly faster than previous algorithms in terms of convergence speed. The proposed method can accurately reproduce the true relative permeability curves without a presumption of the endpoint saturations given a small end-effect number of <0.56. As a comparison, the routine JBN method produces abnormal interpretation results (with the estimated connate water saturation ≈33% higher than and the endpoint water/gas relative permeability only ≈0.02 of the true value) under comparable conditions. The proposed framework is a promising computationally effective alternative to the JBN method to accurately derive relative permeability relations for gas–water–coal systems with multiple fluid–rock interaction mechanisms.


Sign in / Sign up

Export Citation Format

Share Document