dissolved organics
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 15)

H-INDEX

26
(FIVE YEARS 1)

Author(s):  
Taylor Maavara ◽  
Laura Logozzo ◽  
Aron Stubbins ◽  
Kelly Aho ◽  
Craig Brinkerhoff ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Hans Kristianto ◽  
Edwin Reynaldi ◽  
Susiana Prasetyo ◽  
Asaf K Sugih

Abstract Natural coagulants from plants resources have gained a lot of attention as it is renewable, biodegradable, non-hazardous, lower cost, and less sludge generated compared to chemical coagulants. However there are still some drawbacks, namely long settling time and possible increase of dissolved organic carbon in the treated water. In this paper we tried to address these drawbacks by utilizing citrate modified Fe3O4 to adsorb protein from Leucaena leucocephala as the active coagulating agent. The effect of trisodium citrate concentration and protein adsorption pH to the adsorbed protein was investigated. It was found that the trisodium citrate concentration of 0.5 M and pH 4.0 gave the highest protein adsorption. The obtained magnetic coagulant was furthermore characterized using Scanning Electron Microscopy, X-ray Diffraction, Fourier Transform Infrared Spectroscopy, and Transmission Electron Microscopy to observe the characteristics before and after protein adsorption. Furthermore, the effect of pH (2 to 10) and coagulant dosage (60 to 600 mg L-1) to the removal of synthetic Congo red wastewater and sludge volume formation was investigated. It was found that pH 3 was the best pH for coagulation due to charge neutralization mechanism of leucaena protein. Furthermore the highest removal was obtained at dosage 420 mg L-1 with 80% removal. This result was comparable with crude extract of leucaena with half settling time (20 min) and lower increase of permanganate value, indicating lower increase of dissolved organics in the treated water.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Hans Kristianto ◽  
Edwin Reynaldi ◽  
Susiana Prasetyo ◽  
Asaf K. Sugih

AbstractNatural coagulants from plants resources have gained a lot of attention as it is renewable, biodegradable, non-hazardous, lower cost, and less sludge generated compared to chemical coagulants. However there are still some drawbacks, namely long settling time and possible increase of dissolved organic carbon in the treated water. In this paper we tried to address these drawbacks by utilizing citrate modified Fe3O4 to adsorb protein from Leucaena leucocephala as the active coagulating agent. The effect of trisodium citrate concentration and protein adsorption pH to the adsorbed protein was investigated. It was found that the trisodium citrate concentration of 0.5 M and pH 4.0 gave the highest protein adsorption. The obtained magnetic coagulant was furthermore characterized using Scanning Electron Microscopy, X-ray Diffraction, Fourier Transform Infrared Spectroscopy, and Transmission Electron Microscopy to observe the characteristics before and after protein adsorption. Furthermore, the effect of pH (2 to 10) and coagulant dosage (60 to 600 mg L− 1) to the removal of synthetic Congo red wastewater and sludge volume formation was investigated. It was found that pH 3 was the best pH for coagulation due to charge neutralization mechanism of leucaena protein. Furthermore the highest removal was obtained at dosage 420 mg L− 1 with 80% removal. This result was comparable with crude extract of leucaena with half settling time (20 min) and lower increase of permanganate value, indicating lower increase of dissolved organics in the treated water.


2020 ◽  
Author(s):  
Hans Kristianto ◽  
Edwin Reynaldi ◽  
Susiana Prasetyo ◽  
Asaf K Sugih

Abstract Natural coagulants from plants resources have gained a lot of attention as it is renewable, biodegradable, non-hazardous, lower cost, and less sludge generated compared to chemical coagulants. However there are still some drawbacks, namely long settling time and possible increase of dissolved organic carbon in the treated water. In this paper we tried to address these drawbacks by utilizing citrate modified Fe3O4 to adsorb protein from Leucaena leucocephala as the active coagulating agent. The effect of trisodium citrate concentration and protein adsorption pH to the adsorbed protein was investigated. It was found that the trisodium citrate concentration of 0.5 M and pH 4.0 gave the highest protein adsorption. The obtained magnetic coagulant was furthermore characterized using SEM, XRD, FTIR, and TEM, to observe the characteristics before and after protein adsorption. Furthermore the effect of pH (2.0 to 10.0) and coagulant dosage (60 to 600 mg L-1) to the removal of synthetic Congo red wastewater and sludge volume formation was investigated. It was found that pH 3.0 was the best pH for coagulation due to charge neutralization mechanism of leucaena protein. Furthermore the highest removal was obtained at dosage 420 mg L-1 with 80% removal. This result was comparable with crude extract of leucaena with half settling time (20 min) and lower increase of permanganate value, indicating lower increase of dissolved organics in the treated water.


2020 ◽  
Author(s):  
Hans Kristianto ◽  
Edwin Reynaldi ◽  
Susiana Prasetyo ◽  
Asaf K Sugih

Abstract Natural coagulants from plants resources have gained a lot of attention as it is renewable, biodegradable, non-hazardous, lower cost, and less sludge generated compared to chemical coagulants. However there are still some drawbacks, namely long settling time and possible increase of dissolved organic carbon in the treated water. In this paper we tried to address these drawbacks by utilizing citrate modified Fe3O4 to adsorb protein from Leucaena leucocephala as the active coagulating agent. The effect of trisodium citrate concentration and protein adsorption pH to the adsorbed protein was investigated. It was found that the trisodium citrate concentration of 0.5 M and pH 4.0 gave the highest protein adsorption. The obtained magnetic coagulant was furthermore characterized using SEM, XRD, FTIR, and TEM, to observe the characteristics before and after protein adsorption. Furthermore the effect of pH (2.0 to 10.0) and coagulant dosage (60 to 600 mg L-1) to the removal of synthetic Congo red wastewater and sludge volume formation was investigated. It was found that pH 3.0 was the best pH for coagulation due to charge neutralization mechanism of leucaena protein. Furthermore the highest removal was obtained at dosage 420 mg L-1 with 80% removal. This result was comparable with crude extract of leucaena with half settling time (20 min) and lower increase of permanganate value, indicating lower increase of dissolved organics in the treated water.


2020 ◽  
Vol 200 (2) ◽  
pp. 401-411
Author(s):  
T. A. Mikhaylik ◽  
A. P. Nedashkovsky ◽  
N. D. Khodorenko ◽  
P. Ya. Tishchenko

Data on dissolved organic concentration (DOC) and concentration of nutrients (phosphorus, silicon, and nitrogen of ammonium, nitrite and nitrate) in the Razdolnaya/Suifen River water are presented. The samples were collected fortnightly, as a rule, during more than a year (2013–2014). The nutrients concentration decreased and DOC and humic substances concentration increased with the river run-off increasing. In conditions of monsoon climate, the nutrients discharge from the Razdolnaya/Suifen into the Amur Bay had great pulsations that promoted sometimes producing of «excessive» phytoplankton biomass in the bay and provided a background for hypoxia at the bottom. Natural terrestrial fluxes of nutrients and DOC into the bay are much higher than these substances supply with waste waters of Vladivostok City. Interannual variability of the nutrients and dissolved organics fluxes into the Amur Bay is traced. Tendency to their increasing is supposed since 2003 because of the Razdolnaya/Suifen River annual discharge increasing observed by Hydrometeorological Agency in 2003–2017.


2020 ◽  
Vol 6 (19) ◽  
pp. eaba1799
Author(s):  
Travis B. Meador ◽  
Niels Schoffelen ◽  
Timothy G. Ferdelman ◽  
Osmond Rebello ◽  
Alexander Khachikyan ◽  
...  

Thaumarchaeotal nitrifiers are among the most abundant organisms in the ocean, but still unknown is the carbon (C) yield from nitrification and the coupling of these fluxes to phosphorus (P) turnover and release of metabolites from the cell. Using a dual radiotracer approach, we found that Nitrosopumilus maritimus fixed roughly 0.3 mol C, assimilated 2 mmol P, and released ca. 10−2 mol C and 10−5 mol P as dissolved organics (DOC and DOP) per mole ammonia respired. Phosphate turnover may influence assimilation fluxes by nitrifiers in the euphotic zone, which parallel those of the dark ocean. Collectively, marine nitrifiers assimilate up to 2 Pg C year−1 and 0.05 Pg P year−1 and thereby recycle roughly 5% of mineralized C and P into marine biomass. Release of roughly 50 Tg DOC and 0.2 Tg DOP by thaumarchaea each year represents a small but fresh input of reduced substrates throughout the ocean.


Sign in / Sign up

Export Citation Format

Share Document