0321 Effect of diet energy level and genomic residual feed intake on dairy heifer performance

2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 154-154
Author(s):  
K. Williams ◽  
K. A. Weigel ◽  
W. K. Coblentz ◽  
N. M. Esser ◽  
H. Schlesser ◽  
...  
Author(s):  
K.T. Williams ◽  
K.A. Weigel ◽  
W.K. Coblentz ◽  
N.M. Esser ◽  
H. Schlesser ◽  
...  

2019 ◽  
Vol 102 (5) ◽  
pp. 4041-4050
Author(s):  
K.T. Williams ◽  
K.A. Weigel ◽  
W.K. Coblentz ◽  
N.M. Esser ◽  
H. Schlesser ◽  
...  

2019 ◽  
Vol 97 (5) ◽  
pp. 2181-2187
Author(s):  
Ahmed A Elolimy ◽  
Emad Abdel-Hamied ◽  
Liangyu Hu ◽  
Joshua C McCann ◽  
Daniel W Shike ◽  
...  

Abstract Residual feed intake (RFI) is a widely used measure of feed efficiency in cattle. Although the precise biologic mechanisms associated with improved feed efficiency are not well-known, most-efficient steers (i.e., with low RFI coefficient) downregulate abundance of proteins controlling protein degradation in skeletal muscle. Whether cellular mechanisms controlling protein turnover in ruminal tissue differ by RFI classification is unknown. The aim was to investigate associations between RFI and signaling through the mechanistic target of rapamycin (MTOR) and ubiquitin-proteasome pathways in ruminal epithelium. One hundred and forty-nine Red Angus cattle were allocated to 3 contemporary groups according to sex and herd origin. Animals were offered a finishing diet for 70 d to calculate the RFI coefficient for each. Within each group, the 2 most-efficient (n = 6) and least-efficient animals (n = 6) were selected. Compared with least-efficient animals, the most-efficient animals consumed less feed (P < 0.05; 18.36 vs. 23.39 kg/d DMI). At day 70, plasma samples were collected for insulin concentration analysis. Ruminal epithelium was collected immediately after slaughter to determine abundance and phosphorylation status of 29 proteins associated with MTOR, ubiquitin-proteasome, insulin signaling, and glucose and amino acid transport. Among the proteins involved in cellular protein synthesis, most-efficient animals had lower (P ≤ 0.05) abundance of MTOR, p-MTOR, RPS6KB1, EIF2A, EEF2K, AKT1, and RPS6KB1, whereas MAPK3 tended (P = 0.07) to be lower. In contrast, abundance of p-EEF2K, p-EEF2K:EEF2K, and p-EIF2A:EIF2A in most-efficient animals was greater (P ≤ 0.05). Among proteins catalyzing steps required for protein degradation, the abundance of UBA1, NEDD4, and STUB1 was lower (P ≤ 0.05) and MDM2 tended (P = 0.06) to be lower in most-efficient cattle. Plasma insulin and ruminal epithelium insulin signaling proteins did not differ (P > 0.05) between RFI groups. However, abundance of the insulin-responsive glucose transporter SLC2A4 and the amino acid transporters SLC1A3 and SLC1A5 also was lower (P ≤ 0.05) in most-efficient cattle. Overall, the data indicate that differences in signaling mechanisms controlling protein turnover and nutrient transport in ruminal epithelium are components of feed efficiency in beef cattle.


2018 ◽  
Vol 96 (suppl_3) ◽  
pp. 428-428
Author(s):  
J Michal ◽  
H Neibergs ◽  
J Mutch ◽  
J Kiser ◽  
J Taylor ◽  
...  

2021 ◽  
pp. 102998
Author(s):  
Bianca Vilela Pires ◽  
Nedenia Bonvino Stafuzza ◽  
Luara Afonso de Freitas ◽  
Maria Eugênia Zerlotti Mercadante ◽  
Ester Silveira Ramos ◽  
...  

2021 ◽  
pp. 106414
Author(s):  
Bernardo José Marques Ferreira ◽  
Clayton Quirino Mendes ◽  
Rafael Torres de Souza Rodrigues ◽  
Dalinne Tamara Queiroz de Carvalho ◽  
Glayciane Costa Gois ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1822
Author(s):  
Cory T. Parsons ◽  
Julia M. Dafoe ◽  
Samuel A. Wyffels ◽  
Timothy DelCurto ◽  
Darrin L. Boss

We evaluated heifer post-weaning residual feed intake (RFI) classification and cow age on dry matter intake (DMI) at two stages of production. Fifty-nine non-lactating, pregnant, (Study 1) and fifty-four lactating, non-pregnant (Study 2) commercial black Angus beef cows were grouped by age and RFI. Free-choice, hay pellets were fed in a GrowSafe feeding system. In Study 1, cow DMI (kg/d) and intake rate (g/min) displayed a cow age effect (p < 0.01) with an increase in DMI and intake rate with increasing cow age. In Study 2, cow DMI (kg/d) and intake rate (g/min) displayed a cow age effect (p < 0.02) with an increase in DMI and intake rate with increasing cow age. Milk production displayed a cow age × RFI interaction (p < 0.01) where both 5–6-year-old and 8–9-year-old low RFI cows produced more milk than high RFI cows. For both studies, intake and intake behavior were not influenced by RFI (p ≥ 0.16) or cow age × RFI interaction (p ≥ 0.21). In summary, heifer’s post-weaning RFI had minimal effects on beef cattle DMI or intake behavior, however, some differences were observed in milk production.


2021 ◽  
Vol 66 (1) ◽  
pp. 53-57
Author(s):  
M.M. Fathi ◽  
A. Galal ◽  
I. Al-Homidan ◽  
O.K. Abou-Emera ◽  
G.N. Rayan

Sign in / Sign up

Export Citation Format

Share Document