068 Utilization of resynchronization as a strategy to increase the percentage of replacement beef heifers conceiving to artificial insemination (AI) after an initial fixed-time AI (TAI)

2016 ◽  
Vol 94 (suppl_1) ◽  
pp. 34-34
Author(s):  
P. L. P. Fontes ◽  
N. Oosthuizen ◽  
V. R. G. Mercadante ◽  
G. V. de Moraes ◽  
D. D. Henry ◽  
...  
Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 849
Author(s):  
Aitor Fernandez-Novo ◽  
Sergio Santos-Lopez ◽  
Jose Luis Pesantez-Pacheco ◽  
Natividad Pérez-Villalobos ◽  
Ana Heras-Molina ◽  
...  

In beef herds, increasing animal welfare, improving reproductive performance and easing animal management are key goals in farm economics. We explored whether delaying the removal of the intravaginal progesterone device by 24 h in heifers synchronized with a 5d Co-synch 72-h protocol could improve reproductive efficiency of fixed-time artificial insemination (FTAI). In experiment 1, we examined the total synchronization rate (TSR) in cycling Holstein heifers. Heifers (13.4 ± 0.69 mo.) were randomly assigned to the standard 5d Co-synch 56-h protocol (5dCo56; n = 10), 5d Co-synch 72-h (5dCo72; n = 17), or the modified 5d Co-synch 72-h protocol, in which removal of the progesterone device was delayed by 24 h (6dCo48; n = 19). In experiment 2, 309 cycling beef heifers on 18 commercial farms were subjected to the 5d Co-synch 72-h or 6-d Co-synch 48-h protocol and conception rate (CR) studied. In experiment 1, the three protocols led no differences on TSRs of 80.0% (5dCo56), 88.2% (5dCo72), and 89.5% (6dCo48). In experiment 2, the CR from the beef heifers, observed during two consecutive reproductive seasons did not differ: 59.7% for 5dCo72 and 62.0% for 6dCo48 (p = 0.907). Therefore, delaying removal by 24 h provides satisfactory results without reducing reproductive efficiency of heifers.


2002 ◽  
Vol 74 (3) ◽  
pp. 547-552 ◽  
Author(s):  
D. Cavestany ◽  
N. Negrin ◽  
R. Negrin ◽  
J. F. Groth

AbstractThe objective was to evaluate different oestrous synchronization schemes in beef cattle under range conditions. In experiment 1, 202 heifers averaging 26 months of age were assigned randomly to three treatments: (a) GnRH-PG. (no. = 44) day 0 (D0): injection of GnRH; D7: injection of PGF2α; D0 to D25 oestrous detection (OD) and artificial insemination (AI); (b) OD-PG. (no. = 45) D0 to D4; OD + AI; D5: injection of PGF2α; D5 to D25 OD + AI; and (c)Ovsynch. (no. = 113) D0: injection of GnRH; D7: injection of PGF2α; D9: injection of GnRH and 16 h later AI at fixed time. In experiment 2, 318 non-suckling cows were assigned randomly to three treatments: (a) GnRH-PG. (no. = 106) D0: injection of GnRH; D7: injection of PGF2α; D0 to D25 OD + AI; (b) GnRH-MAP-PG. (no. = 106) D0: injection of a GnRH analogue and insertion of an intravaginal sponge impregnated with 250 mg of medroxyprogesterone acetate; D7: injection of PGF2α and sponge withdrawal; D0 to D25 OD + AI; (c) controls. (no. = 106) OD and AI. The experimental period lasted 25 days and, with exception of the Ovsynch treatment, oestrous detection was carried out twice a day (a.m./p.m.) and inseminations performed 12 h later. The pregnancy rates assessed by ultrasonography 30 days after AI were: experiment 1: (a) 30·0%; (b) 28·6% and (c) 62·3% (P < 0·05); experiment 2: (a) 60·2%; (b) 57·8% and (c) 45·5% (P < 0·05). It is concluded that in heifers and non-suckling cows, oestrous synchronization treatments result in higher pregnancy rates. In non-suckling cows, the addition of a progestagen did not improve the response.


2021 ◽  
Vol 33 (2) ◽  
pp. 161
Author(s):  
E. R. Canadas ◽  
B. J. Duran ◽  
G. Machado ◽  
A. Nall ◽  
S. E. Battista ◽  
...  

Ovulatory response to the initial gonadotrophin-releasing hormone (GnRH) of the CO-Synch protocol is affected by circulating progesterone (P4) and follicle size. In addition, heifers that ovulate to the initial GnRH treatment have greater fertility after AI. Thus, this study determined the effect of (1) presynchronization (Presynch) before a 6-day CO-Synch protocol and (2) circulating [RCE1] (P4) on ovulatory response, oestrus expression, and pregnancies per AI (P/AI) in beef heifers. Yearling beef heifers (n=233) at three locations were randomly assigned in a 2×2 factorial design to the following treatments: (1) Presynch+6-day CO-Synch with a new P4 device; (2) Presynch+6-day CO-Synch with a once-used P4 device; (3) 6-day CO-Synch with a new P4 device; and (4) 6-day CO-Synch with a once-used P4 device. Presynch consisted of insertion of a new P4 intravaginal device (1.38g of P4) on Day −17 and removal of P4 device on Day −11 concurrently with 500µg of cloprostenol sodium (PGF). On Day −9, all heifers received either a new (New) or once-used (Used) CIDR and 100µg of gonadorelin acetate (GnRH). Six days later (Day −3), CIDRs were removed, 1000µg of PGF was administered and an oestrous detection patch applied (Estrotect). At 72h after CIDR removal, AI was performed concurrently with administration of 100µg of GnRH. Pregnancy was determined by transrectal ultrasonography 31 days after AI. A subset of heifers (n=155) was examined on Day −9 and Day −3 by ultrasonography to determine ovulation to Day −9 GnRH. Data were analysed using generalized linear mixed models (SAS 9.4; SAS Institute Inc.). Presynch heifers had larger follicle diameter on Day −9 (12.7±0.3 vs. 10.1±0.3 mm; P&lt;0.001), greater ovulatory response to Day −9 GnRH (82.5%; 66/80 vs. 56%; 42/75; P&lt;0.001), greater expression of oestrus (90.6%; 106/117 vs. 78.4%; 91/116; P&lt;0.02), and earlier oestrus (49.8±1 vs. 53.1±1 h; P&lt;0.01) compared with controls. There was a treatment×CIDR interaction on oestrous expression, such that a lesser (P&lt;0.05) percentage of control heifers with new CIDR expressed oestrus compared with all other groups (Table 1). Heifers with a used CIDR during the 6-day CO-Synch tended (P=0.08) to have greater P/AI (52.1%; 61/117) than those with a new CIDR (40.5%; 47/116). In conclusion, presynchronization before initiation of a 6-day CO-Synch increased follicle diameter, enhanced ovulatory response and oestrous expression, but did not affect fertility. The earlier onset of oestrus in presynchronized heifers suggests that the timing of AI may need to be modified. Table 1. Oestrous expression and pregnancy per AI (P/AI) in beef heifers with or without presynchronization and treated with a new or used CIDR during a 6-day CO-Synch Treatment CIDR Oestrus (%; n/n) Time of oestrus (h) P/AI (%; n/n) Control New 67.8a (40/59) 53.7±1.5a 33.9 (20/59) Used 89.5b (51/57) 52.7±1.6a 50.9 (29/57) Presynch New 94.7b (54/57) 50.9±1.4b 47.4 (27/57) Used 86.7b (52/60) 48.7±1.3b 53.3 (32/60) P-value Treatment 0.03 0.01 0.21 CIDR 0.62 0.19 0.08 Interaction 0.003 0.75 0.38 a,bValues with different superscripts differ (P&lt;0.05).


2010 ◽  
Vol 90 (1) ◽  
pp. 23-34 ◽  
Author(s):  
J A Small ◽  
M G Colazo ◽  
J P Kastelic ◽  
N E Erickson ◽  
R J Mapletoft

Three experiments were conducted to determine the effects of presynchronization and treatment with equine chorionic gonadotropin (eCG) on corpus luteum (CL) and ovarian follicular development, plasma progesterone concentrations, and pregnancy rates in beef heifers subjected to a gonadotropin releasing hormone (GnRH)-based, fixed-timed AI (TAI) protocol. All heifers were given GnRH on day 0, prostaglandin F2α (PGF) on day 7, and a second GnRH on day 9 concurrent with TAI (54 h after PGF). In exp. 1 (N = 148), presynchronization with PGF (days -22 and -11) decreased the percentage of heifers with non-luteal plasma progesterone concentrations on day 0 (5.4 vs 29.7%) and day 7 (0 vs 11.6%; P < 0.05), but not on day 9 (74.3 vs. 66.2%; P > 0.20), and reduced the number of heifers in estrus and bred before TAI (P < 0.05). Although presynchronization reduced preovulatory follicle diameter (12.9 ± 0.3 vs. 14.9 ± 0.3 mm; mean ± SEM; P < 0.01), it did not affect TAI pregnancy rates (36.5 vs. 29.7%; P > 0.20). In exp. 2, heifers (N = 128) were presynchronized with melengestrol acetate (MGA) (days -27 to -12), and received a controlled internal drug release (CIDR) on day 0; on day 7, half were given 300 IU of eCG at CIDR removal. Treatment with eCG tended to increase preovulatory follicle diameter in heifers that did not ovulate to GnRH on day 0 (P = 0.06), but did not affect the percentage of heifers with non-luteal plasma progesterone concentrations on day 9 (57.8 vs. 57.8%) or TAI pregnancy rates (48.4 vs. 53.1%; P > 0.20). Experiment 3 was a 2 × 2 factorial arrangement of presynchronization (PGF concurrent with a CIDR on day -7) and eCG treatments (on day 7) applied to heifers in three herds (A, N = 150, B, N = 260 and C, N = 40). All heifers had a once-used CIDR from days 0 to 7. Presynchronization increased the percentage of heifers (Herd A) with low-luteal plasma progesterone concentrations on day 0 (70.7 vs. 22.7%) and day 7 (90.7 vs. 53.3%; P < 0.01), but did not affect the percentage of heifers with non-luteal concentrations of progesterone on day 9 (97.3 vs. 93.3%; P > 0.20). Combined for all herds, presynchronization reduced the prevalence of a CL on day 0 (23.5 vs. 73.7%; P < 0.01), and increased the prevalence of follicles ≥ 10 mm on day 7 (96.8 vs. 86.7%; P < 0.01); however, TAI pregnancy rates (195/439 = 44.4%) were not improved by either presynchronization or eCG treatment (P > 0.20).Key words: Presynchronization, equine chorionic gonadotropin, GnRH, fixed-time artificial insemination, progesterone


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 374-374
Author(s):  
Emma R Knickmeyer ◽  
Jordan M Thomas ◽  
James William C Locke ◽  
Rachael C Bonacker ◽  
Mark R Ellersieck ◽  
...  

Abstract Estrous response and pregnancy rates resulting from fixed-time (FTAI) or split-time (STAI) artificial insemination were compared among heifers following treatment with the 7-d CO-Synch + CIDR® (controlled internal drug release;1.38g progesterone) protocol. Heifers (n = 456) were assigned to balanced treatments based on weight and reproductive tract score (RTS; Scale 1–5). Gonadotropin-releasing hormone (GnRH; 100 µg gonadorelin acetate) was administered coincident with CIDR® insertion. Progesterone inserts were removed after 7 d, and PG (250 mg im cloprostenol sodium) was administered at CIDR® removal. Estrus detection aids (Estrotect®) were applied at the time PG was administered. Estrous status was recorded at FTAI or STAI, and estrus was defined as removal of ≥ 50% of the grey coating from the Estrotect® patch. Heifers assigned to the FTAI treatment received GnRH and were artificially inseminated 54 h after PG administration. In the STAI treatment, only heifers that expressed estrus prior to 54 h were artificially inseminated at that time. For heifers failing to express estrus, AI was postponed 24 h and only those heifers that failed to exhibit estrus by the delayed time (78 h) received GnRH concurrent with AI. Estrous response prior to the standard time of FTAI did not differ between treatments (P = 0.3). Total estrous response was increased (P &lt; 0.001) among heifers assigned to STAI (74%, STAI; 47%, FTAI); however, pregnancy rates resulting from AI were similar between treatments (48%, STAI; 46%, FTAI; P = 0.4), as were pregnancy rates at the end of a 60 d breeding season (P = 0.6). In summary, STAI resulted in a greater estrous response following treatment with the 7-d CO-Synch + CIDR® protocol; however, this did not result in an increase in pregnancy rate compared to heifers that received FTAI.


2021 ◽  
Vol 33 (2) ◽  
pp. 167
Author(s):  
E. M. Zwiefelhofer ◽  
S. X. Yang ◽  
M. Asai-Coakwell ◽  
M. G. Colazo ◽  
J. Hellquist ◽  
...  

Intravaginal progesterone (P4) devices used for ovarian synchronization before fixed-time AI (FTAI) differ in drug release, which may influence fertility outcome. A 2×2 study was designed to determine the effects of different intravaginal devices (PRID Delta, 1.55g of P4 vs. CIDR, 1.38g of P4) and parity (heifers vs. cows) on follicular dynamics, expression of oestrus, and pregnancy per AI (P/AI). At random stages of the oestrous cycle, nulliparous beef heifers and lactating cows were given 100µg of gonadorelin (gonadotrophin-releasing hormone, GnRH) intramuscularly (IM) and assigned randomly to either the PRID (n=76 heifers, 76 multiparous, 27 primiparous) or CIDR (n=76 heifers, 73 multiparous, 32 primiparous) group. Devices were removed 5 days later, an oestrus-detection patch was applied just cranial to the tail head, and 500µg of cloprostenol was given IM at the time of device removal and again 24h later. At 72h after device removal, cattle were inseminated and given 100µg of GnRH IM. Transrectal ultrasonography was used to determine the diameter of the largest follicle on the day of device removal and at FTAI, ovulation time, and pregnancy status 30 days after FTAI. A colour change of ≥50% of the oestrus-detection patch at FTAI was taken as expression of oestrus. Data were compared among groups by 2-way ANOVA using MIXED and GLIMMIX procedures. There were no interactions between P4 device and parity for any endpoint. The diameter of the largest follicle (mean±s.e.m.) was not different between PRID and CIDR groups on either the day of device removal (10.6±0.1 vs. 10.9±0.1mm) or the day of FTAI (13.7±0.1 vs. 13.9±0.1mm). The proportion displaying oestrus did not differ between P4 device groups, but was greater in heifers than in cows [121/152 (79.6%) vs. 135/207 (65.2%); P&lt;0.01], and the interval from FTAI to ovulation was shorter in heifers than in cows (27.8±1.2 vs. 32.0±1.1 h; P=0.01). The P/AI was not different between P4 device groups or parity groups (overall 67.0%, 238/355). However, among lactating cows, the P/AI tended to be greater in the PRID vs. CIDR group [75/102 (73.5%) vs. 64/105 (61.0%); P=0.10], and was greater in multiparous vs. primiparous cows [106/148 (71.6%) vs. 33/59 (55.9%); P=0.04]. Among cattle that displayed oestrus, the P/AI tended to be greater in the PRID vs. CIDR group [92/123 (74.8%) vs. 85/131 (64.9%); P=0.09]. Among lactating cows that displayed oestrus, the P/AI was greater in multiparous vs. primiparous cows [74/94 (78.2%) vs. 24/42 (57.1%); P&lt;0.01]. In summary, follicular dynamics and expression of oestrus did not differ between PRID and CIDR groups, but the P/AI tended to be greater in PRID-treated lactating cows and in cattle that displayed oestrus. This research was supported by CEVA Animal Health, Saskatchewan ADF, Agriculture and Agri-Foods Canada, and Rockway Inc.


2017 ◽  
Vol 95 (suppl_4) ◽  
pp. 249-249
Author(s):  
N. Oosthuizen ◽  
P. L. P. Fontes ◽  
C. D. Sanford ◽  
F. M. Ciriaco ◽  
D. D. Henry ◽  
...  

2018 ◽  
Vol 96 (5) ◽  
pp. 1894-1902 ◽  
Author(s):  
Nicola Oosthuizen ◽  
Pedro L P Fontes ◽  
Darren D Henry ◽  
Francine M Ciriaco ◽  
Carla D Sanford ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document