CONSTRUCTION OF FORECAST MODEL BY THE SEARCH METHOD OF NONLINEAR PROGRAMMING ON GEODETIC DATA

2019 ◽  
Vol XIII (4/2019) ◽  
2021 ◽  
Vol 966 (12) ◽  
pp. 2-10
Author(s):  
M.J. Bryn ◽  
G.G. Shevshenko

General idea of the search method is provided. An information flowchart explaining themethod is presented. Formulas for evaluating the project of a geodetic network using the search method based on the undistorted model are given. The sequence of the mentioned design algorithm based on the undistorted model is developed. A computer program for evaluating the project in Visual Basic was compiled. The design and evaluation of the project of two networks, a triangulation geodetic and the one built according to the free stationing scheme was made. Both networks were constructed using the search method of nonlinear programming based on the undistorted model. The results of the evaluation of the triangulation network project coincided with those performed by the classical parametric method, which confirmed the correctness of the proposed algorithm for designing a geodetic network using the search method. The full weight matrix of coordinates of the defined points was obtained, and the average square error of the position of the weakest point in the network calculated.


2021 ◽  
Author(s):  
Takuya Nishimura

Abstract In this study, we developed a regional likelihood model for crustal earthquakes using geodetic strain rate data from southwest Japan. First, smoothed strain rate distributions were estimated from continuous GNSS measurements. Second, we removed the elastic strain rate attributed to interplate coupling on the subducting plate boundary, including the observed strain rate, under the assumption that it is not attributed to permanent loading on crustal faults. We then converted the geodetic strain rates to seismic moment rates and calculated the 30-year probability for M ≥ 6 earthquakes in 0.2 × 0.2° cells, using a truncated Gutenberg–Richter law and time-independent Poisson process. Likelihood models developed using different conversion equations, seismogenic thicknesses, and rigidities were validated using the epicenters and moment distribution of historical earthquakes. The average seismic moment rate of crustal earthquakes recorded during 1583–2020 was only 13–20 % of the seismic moment rate converted from the geodetic data, which suggests that the observed geodetic strain rate includes considerable inelastic strain. Therefore, we introduced an empirical coefficient to calibrate the moment rate converted from geodetic data with the moment rate of the earthquakes. Several statistical scores and the Molchan diagram showed that all models could predict real earthquakes better than the reference model, in which earthquakes occur uniformly in space. Models using principal horizontal strain rates exhibited better predictive skill than those using the maximum horizontal shear strain rate. There was no significant difference in the predictive skill between uniform and variable distributions for seismogenic thickness and rigidity. The preferred models suggested high 30-year-probability in the Niigata–Kobe Tectonic Zone and central Kyushu, exceeding 1% in more than half of the analyzed region. Model predictive skill was also verified by a prospective test using earthquakes recorded during 2010–2020. This study suggests that the proposed forecast model based on geodetic data can improve the regional likelihood model for crustal earthquakes in Japan in combination with other forecast models based on active faults and seismicity.


2007 ◽  
Vol 22 (3) ◽  
pp. 365-390 ◽  
Author(s):  
Choong Ming Chin ◽  
Abdul Halim Abdul Rashid ◽  
Khalid Mohamed Nor

Author(s):  
W. L. Cleghorn ◽  
R. G. Fenton ◽  
J.-F. Fu

Abstract A general method for the optimum design of gear boxes is presented using a nonlinear programming technique. The mathematical model of the gear box is developed using a symbolic mathematical manipulator. Constraints of the feasible design have been included but reduced to be as few as possible. Identical optimum results were obtained through employing two different optimization methods, the flexible tolerance method and the random search method, for solving an example problem.


Sign in / Sign up

Export Citation Format

Share Document