scholarly journals The OP Protein Cage: A Versatile Molecular Delivery Platform

2021 ◽  
Vol 75 (4) ◽  
pp. 323-328
Author(s):  
Thomas G.W. Edwardson ◽  
Mikail D. Levasseur ◽  
Donald Hilvert

Well-defined containers constructed from multiple protein subunits are a unique class of nanomaterial useful in supramolecular chemistry and biology. These protein cages are widespread in nature, where they are responsible for a diversity of important tasks. As such, producing our own designer protein cages, complete with bespoke functionalities, is a promising avenue to new nanodevices, biotechnology and therapies. Herein, we describe how an artificial, computationally designed protein cage can be rationally engineered using supramolecular intuition to produce new functional capsules. Positive supercharging the interior cavity of this porous protein cage enables the efficient encapsulation of oligonucleotides by electrostatically-driven self-assembly. Moreover, the resulting cargo-loaded cages enter mammalian cells and release their cargo, for example siRNA which modulates gene expression. To expand the cargo scope of this proteinaceous container, a higher level of supramolecular complexity can also be introduced. Encapsulation of anionic surfactants affords protein-scaffolded micelles, which are capable of sequestering poorly water-soluble small molecules within their hydrophobic cores. These hybrid particles stably carry bioactive cargo and deliver it intracellularly, thereby increasing potency. Further development of these genetically-encoded materials is ongoing towards specific applications ranging from cell biology to medicine.

2018 ◽  
Author(s):  
Noor H. Dashti ◽  
Rufika S. Abidin ◽  
Frank Sainsbury

Bioinspired self-sorting and self-assembling systems using engineered versions of natural protein cages have been developed for biocatalysis and therapeutic delivery. The packaging and intracellular delivery of guest proteins is of particular interest for both <i>in vitro</i> and <i>in vivo</i> cell engineering. However, there is a lack of platforms in bionanotechnology that combine programmable guest protein encapsidation with efficient intracellular uptake. We report a minimal peptide anchor for <i>in vivo</i> self-sorting of cargo-linked capsomeres of the Murine polyomavirus (MPyV) major coat protein that enables controlled encapsidation of guest proteins by <i>in vitro</i> self-assembly. Using Förster resonance energy transfer (FRET) we demonstrate the flexibility in this system to support co-encapsidation of multiple proteins. Complementing these ensemble measurements with single particle analysis by super-resolution microscopy shows that the stochastic nature of co-encapsidation is an overriding principle. This has implications for the design and deployment of both native and engineered self-sorting encapsulation systems and for the assembly of infectious virions. Taking advantage of the encoded affinity for sialic acids ubiquitously displayed on the surface of mammalian cells, we demonstrate the ability of self-assembled MPyV virus-like particles to mediate efficient delivery of guest proteins to the cytosol of primary human cells. This platform for programmable co-encapsidation and efficient cytosolic delivery of complementary biomolecules therefore has enormous potential in cell engineering.


2018 ◽  
Author(s):  
Noor H. Dashti ◽  
Rufika S. Abidin ◽  
Frank Sainsbury

Bioinspired self-sorting and self-assembling systems using engineered versions of natural protein cages have been developed for biocatalysis and therapeutic delivery. The packaging and intracellular delivery of guest proteins is of particular interest for both <i>in vitro</i> and <i>in vivo</i> cell engineering. However, there is a lack of platforms in bionanotechnology that combine programmable guest protein encapsidation with efficient intracellular uptake. We report a minimal peptide anchor for <i>in vivo</i> self-sorting of cargo-linked capsomeres of the Murine polyomavirus (MPyV) major coat protein that enables controlled encapsidation of guest proteins by <i>in vitro</i> self-assembly. Using Förster resonance energy transfer (FRET) we demonstrate the flexibility in this system to support co-encapsidation of multiple proteins. Complementing these ensemble measurements with single particle analysis by super-resolution microscopy shows that the stochastic nature of co-encapsidation is an overriding principle. This has implications for the design and deployment of both native and engineered self-sorting encapsulation systems and for the assembly of infectious virions. Taking advantage of the encoded affinity for sialic acids ubiquitously displayed on the surface of mammalian cells, we demonstrate the ability of self-assembled MPyV virus-like particles to mediate efficient delivery of guest proteins to the cytosol of primary human cells. This platform for programmable co-encapsidation and efficient cytosolic delivery of complementary biomolecules therefore has enormous potential in cell engineering.


2019 ◽  
Author(s):  
Jenna Franke ◽  
Benjamin Raliski ◽  
Steven Boggess ◽  
Divya Natesan ◽  
Evan Koretsky ◽  
...  

Fluorophores based on the BODIPY scaffold are prized for their tunable excitation and emission profiles, mild syntheses, and biological compatibility. Improving the water-solubility of BODIPY dyes remains an outstanding challenge. The development of water-soluble BODIPY dyes usually involves direct modification of the BODIPY fluorophore core with ionizable groups or substitution at the boron center. While these strategies are effective for the generation of water-soluble fluorophores, they are challenging to implement when developing BODIPY-based indicators: direct modification of BODIPY core can disrupt the electronics of the dye, complicating the design of functional indicators; and substitution at the boron center often renders the resultant BODIPY incompatible with the chemical transformations required to generate fluorescent sensors. In this study, we show that BODIPYs bearing a sulfonated aromatic group at the meso position provide a general solution for water-soluble BODIPYs. We outline the route to a suite of 5 new sulfonated BODIPYs with 2,6-disubstitution patterns spanning a range of electron-donating and -withdrawing propensities. To highlight the utility of these new, sulfonated BODIPYs, we further functionalize them to access 13 new, BODIPY-based voltage-sensitive fluorophores. The most sensitive of these BODIPY VF dyes displays a 48% ΔF/F per 100 mV in mammalian cells. Two additional BODIPY VFs show good voltage sensitivity (≥24% ΔF/F) and excellent brightness in cells. These compounds can report on action potential dynamics in both mammalian neurons and human stem cell-derived cardiomyocytes. Accessing a range of substituents in the context of a water soluble BODIPY fluorophore provides opportunities to tune the electronic properties of water-soluble BODIPY dyes for functional indicators.


1983 ◽  
Vol 61 (6) ◽  
pp. 421-427 ◽  
Author(s):  
James R. Lepock ◽  
Kwan-Hon Cheng ◽  
Hisham Al-Qysi ◽  
Jack Kruuv

Exposure of mammalian cells to hyperthermic temperatures (ca. 41–45 °C) appears to act as a direct or triggering effect to produce some later response such as cell death, thermotolerance, or heat-shock protein synthesis. The high activation energy of cell killing indicates that the direct effect of hyperthermia might be a thermotropic transition in some cellular component, for this particular response. Both hyperthermic survival and growth data imply that the temperature for the onset of hyperthermic cell killing is 40–41.5 °C for Chinese hamster lung V79 cells. Studies using the electron spin resonance label 2,2-dimethyl-5-dodecyl-5-methyloxazolidine-N-oxide and the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene show the existence of lipid transitions at approximately 7–8 and 23–36 °C (or a broad transition between these temperatures) in mitochondria and whole cell homogenates, that correlate well with changes in growth and hypothermic killing. No lipid transition was detected near 40–41.5 °C that could correlate with hyperthermic killing in either mitochondrial or plasma membranes, but measurements of intrinsic protein fluorescence and protein fluorophore to trans-paranaric acid energy transfer demonstrate the existence of an irreversible transition in protein structure or arrangement above ca. 40 °C in both mitochondrial and plasma membranes. This transition is due to protein rearrangement and (or) unfolding such that there is increased exposure of protein tryptophan and tyrosine residues to polar groups and to paranaric acid. The strength of the transition implies that a significant fraction of total membrane protein is involved in this transition, which may be analogous to the heat-induced denaturation of water-soluble proteins. This alteration in membrane structure above ca. 40 °C could cause many of the observed changes in plasma membrane and mitochondrial function, which may further be involved in cellular responses to hyperthermia.


2021 ◽  
Vol 45 (5) ◽  
pp. 2830-2830
Author(s):  
Duong Duc La ◽  
Jotiram N. Malegaonkar ◽  
Mohammad Al Kobaisi ◽  
Rajesh S. Bhosale ◽  
Sidhanath V. Bhosale ◽  
...  
Keyword(s):  

Correction for ‘Spermine-directed supramolecular self-assembly of water-soluble AIE-active tetraphenylethylene: nanobelt, nanosheet, globular and nanotubular structures’ by Duong Duc La et al., New J. Chem., 2018, 42, 15379–15386, DOI: 10.1039/C8NJ02636J.


RSC Advances ◽  
2013 ◽  
Vol 3 (46) ◽  
pp. 23953 ◽  
Author(s):  
Yingjie Ma ◽  
Jie Yang ◽  
Jinying Li ◽  
Xiaodong Chi ◽  
Min Xue
Keyword(s):  

2008 ◽  
Vol 53 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Rahul P. Bakshi ◽  
Dongpei Sang ◽  
Andrew Morrell ◽  
Mark Cushman ◽  
Theresa A. Shapiro

ABSTRACT African trypanosomiasis (sleeping sickness), caused by protozoan Trypanosoma brucei species, is a debilitating disease that is lethal if untreated. Available drugs are antiquated, toxic, and compromised by emerging resistance. The indenoisoquinolines are a class of noncamptothecin topoisomerase IB poisons that are under development as anticancer agents. We tested a variety of indenoisoquinolines for their ability to kill T. brucei. Indenoisoquinolines proved trypanocidal at submicromolar concentrations in vitro. Structure-activity analysis yielded motifs that enhanced potency, including alkylamino substitutions on N-6, methoxy groups on C-2 and C-3, and a methylenedioxy bridge between C-8 and C-9. Detailed analysis of eight water-soluble indenoisoquinolines demonstrated that in trypanosomes the compounds inhibited DNA synthesis and acted as topoisomerase poisons. Testing these compounds on L1210 mouse leukemia cells revealed that all eight were more effective against trypanosomes than against mammalian cells. In preliminary in vivo experiments one compound delayed parasitemia and extended survival in mice subjected to a lethal trypanosome challenge. The indenoisoquinolines provide a promising lead for the development of drugs against sleeping sickness.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 692
Author(s):  
Sweta Talyan ◽  
Samantha Filipów ◽  
Michael Ignarski ◽  
Magdalena Smieszek ◽  
He Chen ◽  
...  

Diseases of the renal filtration unit—the glomerulus—are the most common cause of chronic kidney disease. Podocytes are the pivotal cell type for the function of this filter and focal-segmental glomerulosclerosis (FSGS) is a classic example of a podocytopathy leading to proteinuria and glomerular scarring. Currently, no targeted treatment of FSGS is available. This lack of therapeutic strategies is explained by a limited understanding of the defects in podocyte cell biology leading to FSGS. To date, most studies in the field have focused on protein-coding genes and their gene products. However, more than 80% of all transcripts produced by mammalian cells are actually non-coding. Here, long non-coding RNAs (lncRNAs) are a relatively novel class of transcripts and have not been systematically studied in FSGS to date. The appropriate tools to facilitate lncRNA research for the renal scientific community are urgently required due to a row of challenges compared to classical analysis pipelines optimized for coding RNA expression analysis. Here, we present the bioinformatic pipeline CALINCA as a solution for this problem. CALINCA automatically analyzes datasets from murine FSGS models and quantifies both annotated and de novo assembled lncRNAs. In addition, the tool provides in-depth information on podocyte specificity of these lncRNAs, as well as evolutionary conservation and expression in human datasets making this pipeline a crucial basis to lncRNA studies in FSGS.


Sign in / Sign up

Export Citation Format

Share Document