BODIPY Fluorophores for Membrane Potential Imaging

Author(s):  
Jenna Franke ◽  
Benjamin Raliski ◽  
Steven Boggess ◽  
Divya Natesan ◽  
Evan Koretsky ◽  
...  

Fluorophores based on the BODIPY scaffold are prized for their tunable excitation and emission profiles, mild syntheses, and biological compatibility. Improving the water-solubility of BODIPY dyes remains an outstanding challenge. The development of water-soluble BODIPY dyes usually involves direct modification of the BODIPY fluorophore core with ionizable groups or substitution at the boron center. While these strategies are effective for the generation of water-soluble fluorophores, they are challenging to implement when developing BODIPY-based indicators: direct modification of BODIPY core can disrupt the electronics of the dye, complicating the design of functional indicators; and substitution at the boron center often renders the resultant BODIPY incompatible with the chemical transformations required to generate fluorescent sensors. In this study, we show that BODIPYs bearing a sulfonated aromatic group at the meso position provide a general solution for water-soluble BODIPYs. We outline the route to a suite of 5 new sulfonated BODIPYs with 2,6-disubstitution patterns spanning a range of electron-donating and -withdrawing propensities. To highlight the utility of these new, sulfonated BODIPYs, we further functionalize them to access 13 new, BODIPY-based voltage-sensitive fluorophores. The most sensitive of these BODIPY VF dyes displays a 48% ΔF/F per 100 mV in mammalian cells. Two additional BODIPY VFs show good voltage sensitivity (≥24% ΔF/F) and excellent brightness in cells. These compounds can report on action potential dynamics in both mammalian neurons and human stem cell-derived cardiomyocytes. Accessing a range of substituents in the context of a water soluble BODIPY fluorophore provides opportunities to tune the electronic properties of water-soluble BODIPY dyes for functional indicators.

2019 ◽  
Author(s):  
Jenna Franke ◽  
Benjamin Raliski ◽  
Steven Boggess ◽  
Divya Natesan ◽  
Evan Koretsky ◽  
...  

Fluorophores based on the BODIPY scaffold are prized for their tunable excitation and emission profiles, mild syntheses, and biological compatibility. Improving the water-solubility of BODIPY dyes remains an outstanding challenge. The development of water-soluble BODIPY dyes usually involves direct modification of the BODIPY fluorophore core with ionizable groups or substitution at the boron center. While these strategies are effective for the generation of water-soluble fluorophores, they are challenging to implement when developing BODIPY-based indicators: direct modification of BODIPY core can disrupt the electronics of the dye, complicating the design of functional indicators; and substitution at the boron center often renders the resultant BODIPY incompatible with the chemical transformations required to generate fluorescent sensors. In this study, we show that BODIPYs bearing a sulfonated aromatic group at the meso position provide a general solution for water-soluble BODIPYs. We outline the route to a suite of 5 new sulfonated BODIPYs with 2,6-disubstitution patterns spanning a range of electron-donating and -withdrawing propensities. To highlight the utility of these new, sulfonated BODIPYs, we further functionalize them to access 13 new, BODIPY-based voltage-sensitive fluorophores. The most sensitive of these BODIPY VF dyes displays a 48% ΔF/F per 100 mV in mammalian cells. Two additional BODIPY VFs show good voltage sensitivity (≥24% ΔF/F) and excellent brightness in cells. These compounds can report on action potential dynamics in both mammalian neurons and human stem cell-derived cardiomyocytes. Accessing a range of substituents in the context of a water soluble BODIPY fluorophore provides opportunities to tune the electronic properties of water-soluble BODIPY dyes for functional indicators.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1140
Author(s):  
Silvana Alfei ◽  
Gabriella Piatti ◽  
Debora Caviglia ◽  
Anna Maria Schito

The growing resistance of bacteria to current chemotherapy is a global concern that urgently requires new and effective antimicrobial agents, aimed at curing untreatable infection, reducing unacceptable healthcare costs and human mortality. Cationic polymers, that mimic antimicrobial cationic peptides, represent promising broad-spectrum agents, being less susceptible to develop resistance than low molecular weight antibiotics. We, thus, designed, and herein report, the synthesis and physicochemical characterization of a water-soluble cationic copolymer (P5), obtained by copolymerizing the laboratory-made monomer 4-ammoniumbuthylstyrene hydrochloride with di-methyl-acrylamide as uncharged diluent. The antibacterial activity of P5 was assessed against several multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species. Except for strains characterized by modifications of the membrane charge, most of the tested isolates were sensible to the new molecule. P5 showed remarkable antibacterial activity against several isolates of genera Enterococcus, Staphylococcus, Pseudomonas, Klebsiella, and against Escherichia coli, Acinetobacter baumannii and Stenotrophomonas maltophilia, displaying a minimum MIC value of 3.15 µM. In time-killing and turbidimetric studies, P5 displayed a rapid non-lytic bactericidal activity. Due to its water-solubility and wide bactericidal spectrum, P5 could represent a promising novel agent capable of overcoming severe infections sustained by bacteria resistant the presently available antibiotics.


1983 ◽  
Vol 61 (6) ◽  
pp. 421-427 ◽  
Author(s):  
James R. Lepock ◽  
Kwan-Hon Cheng ◽  
Hisham Al-Qysi ◽  
Jack Kruuv

Exposure of mammalian cells to hyperthermic temperatures (ca. 41–45 °C) appears to act as a direct or triggering effect to produce some later response such as cell death, thermotolerance, or heat-shock protein synthesis. The high activation energy of cell killing indicates that the direct effect of hyperthermia might be a thermotropic transition in some cellular component, for this particular response. Both hyperthermic survival and growth data imply that the temperature for the onset of hyperthermic cell killing is 40–41.5 °C for Chinese hamster lung V79 cells. Studies using the electron spin resonance label 2,2-dimethyl-5-dodecyl-5-methyloxazolidine-N-oxide and the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene show the existence of lipid transitions at approximately 7–8 and 23–36 °C (or a broad transition between these temperatures) in mitochondria and whole cell homogenates, that correlate well with changes in growth and hypothermic killing. No lipid transition was detected near 40–41.5 °C that could correlate with hyperthermic killing in either mitochondrial or plasma membranes, but measurements of intrinsic protein fluorescence and protein fluorophore to trans-paranaric acid energy transfer demonstrate the existence of an irreversible transition in protein structure or arrangement above ca. 40 °C in both mitochondrial and plasma membranes. This transition is due to protein rearrangement and (or) unfolding such that there is increased exposure of protein tryptophan and tyrosine residues to polar groups and to paranaric acid. The strength of the transition implies that a significant fraction of total membrane protein is involved in this transition, which may be analogous to the heat-induced denaturation of water-soluble proteins. This alteration in membrane structure above ca. 40 °C could cause many of the observed changes in plasma membrane and mitochondrial function, which may further be involved in cellular responses to hyperthermia.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1915 ◽  
Author(s):  
Eyob Wondu ◽  
Hyun Woo Oh ◽  
Jooheon Kim

In this study water-soluble polyurethane (WSPU) was synthesized from isophorone diisocyanate (IPDI), and polyethylene glycol (PEG), 2-bis(hydroxymethyl) propionic acid or dimethylolpropionic acid (DMPA), butane-1,4-diol (BD), and triethylamine (TEA) using an acetone process. The water solubility was investigated by solubilizing the polymer in water and measuring the contact angle and the results indicated that water solubility and contact angle tendency were increased as the molecular weight of the soft segment decreased, the amount of emulsifier was increased, and soft segment to hard segment ratio was lower. The contact angle of samples without emulsifier was greater than 87°, while that of with emulsifier was less than 67°, indicating a shift from highly hydrophobic to hydrophilic. The WSPU was also analyzed using Fourier transform infrared spectroscopy (FT-IR) to identify the absorption of functional groups and further checked by X-ray photoelectron spectroscopy (XPS). The molecular weight of WSPU was measured using size-exclusion chromatography (SEC). The structure of the WSPU was confirmed by nuclear magnetic resonance spectroscopy (NMR). The thermal properties of WSPU were analyzed using thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC).


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1008 ◽  
Author(s):  
Qilei Yang ◽  
Chang Zu ◽  
Wengang Li ◽  
Weiwei Wu ◽  
Yunlong Ge ◽  
...  

Paclitaxel (PTX) is a poor water-soluble antineoplastic drug with significant antitumor activity. However, its low bioavailability is a major obstacle for its biomedical applications. Thus, this experiment is designed to prepare PTX crystal powders through an antisolvent precipitation process using 1-hexyl-3-methylimidazolium bromide (HMImBr) as solvent and water as an antisolvent. The factors influencing saturation solubility of PTX crystal powders in water in water were optimized using a single-factor design. The optimum conditions for the antisolvent precipitation process were as follows: 50 mg/mL concentration of the PTX solution, 25 °C temperature, and 1:7 solvent-to-antisolvent ratio. The PTX crystal powders were characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, high-performance liquid chromatography–mass spectrometry, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Raman spectroscopy, solid-state nuclear magnetic resonance, and dissolution and oral bioavailability studies. Results showed that the chemical structure of PTX crystal powders were unchanged; however, precipitation of the crystalline structure changed. The dissolution test showed that the dissolution rate and solubility of PTX crystal powders were nearly 3.21-folds higher compared to raw PTX in water, and 1.27 times higher in artificial gastric juice. Meanwhile, the bioavailability of PTX crystal increased 10.88 times than raw PTX. These results suggested that PTX crystal powders might have potential value to become a new oral PTX formulation with high bioavailability.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1155 ◽  
Author(s):  
Ghada A. Soliman

Observational studies have shown that dietary fiber intake is associated with decreased risk of cardiovascular disease. Dietary fiber is a non-digestible form of carbohydrates, due to the lack of the digestive enzyme in humans required to digest fiber. Dietary fibers and lignin are intrinsic to plants and are classified according to their water solubility properties as either soluble or insoluble fibers. Water-soluble fibers include pectin, gums, mucilage, fructans, and some resistant starches. They are present in some fruits, vegetables, oats, and barley. Soluble fibers have been shown to lower blood cholesterol by several mechanisms. On the other hand, water-insoluble fibers mainly include lignin, cellulose, and hemicellulose; whole-grain foods, bran, nuts, and seeds are rich in these fibers. Water-insoluble fibers have rapid gastric emptying, and as such may decrease the intestinal transit time and increase fecal bulk, thus promoting digestive regularity. In addition to dietary fiber, isolated and extracted fibers are known as functional fiber and have been shown to induce beneficial health effects when added to food during processing. The recommended daily allowances (RDAs) for total fiber intake for men and women aged 19–50 are 38 gram/day and 25 gram/day, respectively. It is worth noting that the RDA recommendations are for healthy people and do not apply to individuals with some chronic diseases. Studies have shown that most Americans do not consume the recommended intake of fiber. This review will summarize the current knowledge regarding dietary fiber, sources of food containing fiber, atherosclerosis, and heart disease risk reduction.


2008 ◽  
Vol 53 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Rahul P. Bakshi ◽  
Dongpei Sang ◽  
Andrew Morrell ◽  
Mark Cushman ◽  
Theresa A. Shapiro

ABSTRACT African trypanosomiasis (sleeping sickness), caused by protozoan Trypanosoma brucei species, is a debilitating disease that is lethal if untreated. Available drugs are antiquated, toxic, and compromised by emerging resistance. The indenoisoquinolines are a class of noncamptothecin topoisomerase IB poisons that are under development as anticancer agents. We tested a variety of indenoisoquinolines for their ability to kill T. brucei. Indenoisoquinolines proved trypanocidal at submicromolar concentrations in vitro. Structure-activity analysis yielded motifs that enhanced potency, including alkylamino substitutions on N-6, methoxy groups on C-2 and C-3, and a methylenedioxy bridge between C-8 and C-9. Detailed analysis of eight water-soluble indenoisoquinolines demonstrated that in trypanosomes the compounds inhibited DNA synthesis and acted as topoisomerase poisons. Testing these compounds on L1210 mouse leukemia cells revealed that all eight were more effective against trypanosomes than against mammalian cells. In preliminary in vivo experiments one compound delayed parasitemia and extended survival in mice subjected to a lethal trypanosome challenge. The indenoisoquinolines provide a promising lead for the development of drugs against sleeping sickness.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hitesh Kumar Dewangan

: Poor solubility of some medicinal compounds is a serious challenge that can be addressed by using a nano-suspension for improved delivery. The nanoparticles enhance the bioavailability along with the aqueous solubility of the drug, which is accomplished by increasing the active surface area of the drug. The gained attention of the nanosuspension is due to its stabilization facility, which is achieved by polymers, such as polyethylene glycol (PEG), having a particular size range of 10 - 100 nm. Hence, these nanoparticles have the capacity of binding to the targeted with very low damage to the healthy tissues. These are prepared by various methods, such as milling, high-pressure homogenization, and emulsification, along with melt emulsification. Moreover, surface modification and solidification have been used to add specific properties to the advanced therapies as post-processing techniques. For many decades, it has been known that water solubility hampers the bioavailability and not all drugs are water-soluble. In order to combat this obstacle, nanotechnology has been found to be of specific interest. For elevating the bioavailability by increasing the dissolution rate, the methodology of reduction of the associated drug particles into their subsequent submicron range is incorporated. For oral and non-oral administration, these nanosuspension formulations are used for the delivery of drugs.


Author(s):  
Sejal Patel ◽  
Anita P. Patel

In the interest of administration of dosage form oral route is most desirable and preferred method. After oral administration to get maximum therapeutic effect, major challenge is their water solubility. Water insoluble drug indicate insufficient bioavailability as well dissolution resulting in fluctuating plasma level. Benidipine (BND) is poorly water soluble antihypertensive drug has lower bioavailability. To improve bioavailability of Benidipine HCL, BND nanosuspension was formulated using media milling technique. HPMC E5 was used to stabilize nanosuspension. The effect of different important process parameters e.g. selection of polymer concentration X1(1.25 mg), stirring time X2 (800 rpm), selection of zirconium beads size X3 (0.4mm) were investigated by 23 factorial design to accomplish desired particle size and saturation solubility. The optimized batch had 408 nm particle size Y1, and showed in-vitro dissolution Y2 95±0.26 % in 30 mins and Zeta potential was -19.6. Differential scanning calorimetry (DSC) and FT-IR analysis was done to confirm there was no interaction between drug and polymer.


2017 ◽  
Vol 118 (5) ◽  
pp. 2770-2788 ◽  
Author(s):  
David M. Coppola ◽  
Brittaney E. Ritchie ◽  
Brent A. Craven

The spatial distribution of receptors within sensory epithelia (e.g., retina and skin) is often markedly nonuniform to gain efficiency in information capture and neural processing. By contrast, odors, unlike visual and tactile stimuli, have no obvious spatial dimension. What need then could there be for either nearest-neighbor relationships or nonuniform distributions of receptor cells in the olfactory epithelium (OE)? Adrian (Adrian ED. J Physiol 100: 459–473, 1942; Adrian ED. Br Med Bull 6: 330–332, 1950) provided the only widely debated answer to this question when he posited that the physical properties of odors, such as volatility and water solubility, determine a spatial pattern of stimulation across the OE that could aid odor discrimination. Unfortunately, despite its longevity, few critical tests of the “sorption hypothesis” exist. Here we test the predictions of this hypothesis by mapping mouse OE responses using the electroolfactogram (EOG) and comparing these response “maps” to computational fluid dynamics (CFD) simulations of airflow and odorant sorption patterns in the nasal cavity. CFD simulations were performed for airflow rates corresponding to quiet breathing and sniffing. Consistent with predictions of the sorption hypothesis, water-soluble odorants tended to evoke larger EOG responses in the central portion of the OE than the peripheral portion. However, sorption simulation patterns along individual nasal turbinates for particular odorants did not correlate with their EOG response gradients. Indeed, the most consistent finding was a rostral-greater to caudal-lesser response gradient for all the odorants tested that is unexplained by sorption patterns. The viability of the sorption and related olfactory “fovea” hypotheses are discussed in light of these findings. NEW & NOTEWORTHY Two classical ideas concerning olfaction’s receptor-surface two-dimensional organization—the sorption and olfactory fovea hypotheses—were found wanting in this study that afforded unprecedented comparisons between electrophysiological recordings in the mouse olfactory epithelium and computational fluid dynamic simulations of nasal airflow. Alternatively, it is proposed that the olfactory receptor layouts in macrosmatic mammals may be an evolutionary contingent state devoid of the functional significance found in other sensory epithelia like the cochlea and retina.


Sign in / Sign up

Export Citation Format

Share Document