meso position
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 30)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
pp. 110015
Author(s):  
Ruth Prieto-Montero ◽  
Alejandro Prieto-Castañeda ◽  
Alberto Katsumiti ◽  
Rebeca Sola-Llano ◽  
Antonia R. Agarrabeitia ◽  
...  
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5915
Author(s):  
Yingtao Fan ◽  
Kaitai Hu ◽  
Junyi Nan ◽  
Yingzhong Shen

Two aggregation-induced emission (AIE) macrocycles (DMP[5]-TPE and PCP[5]-TPE) were prepared by embedding Tetraphenylethene (TPE) unit into the skeletons of Dimethoxypillar[5]arene (DMP[5]) and [15]Paracyclophane ([15]PCP) at meso position, respectively. In crystal, the PCP[5]-TPE showed a distorted cavity, and the incubation of hexane inside the DMP[5]-TPE cavity caused a distinct change in the molecular conformation compared to PCP[5]-TPE. There was no complexation between PCP[5]-TPE and 1,4-dicyanobutane (DCB). UV absorption experiments showed the distorted cavity of DMP[5]-TPE hindered association with DCB.


Author(s):  
Rima Sengupta ◽  
Shubham Tiwari ◽  
Mangalampalli Ravikanth

Two mono meso-functionalized [20]di-[Formula: see text]-benzihomoporphyrins containing [Formula: see text]-formylphenyl and [Formula: see text]-iodophenyl groups at meso-position respectively were synthesized by condensing one equivalent of appropriate tetrapyrrane with one equivalent of [Formula: see text]-formyl benzaldehyde/[Formula: see text]-iodo benzaldehyde in CH2Cl2 under mild acid catalyzed conditions. The meso-formylphenyl and meso-iodophenyl functionalized di-[Formula: see text]-benzihomoporphyrins were used to synthesize two covalently linked di-[Formula: see text]-benzihomoporphyrins-BODIPY conjugates. The meso-formylphenyl-functionalized di-[Formula: see text]-benzihomoporphyrin was converted to corresponding meso-dipyrrolyl substituted di-[Formula: see text]-benzihomoporphyrin by treating with excess pyrrole under acid catalyzed conditions. In the next step, the meso-dipyrrolyl di-[Formula: see text]-benzihomoporphyrin was subjected to oxidation followed by BF2 complexation to afford the directly linked di-[Formula: see text]-benzihomoporphyrin-BODIPY conjugate. The meso-iodophenyl functionalized di-[Formula: see text]-benzihomoporphyrin was coupled with ethynyl-functionalized BODIPY under mild Pd(0) coupling condition to synthesize diphenylethyne-bridged di-[Formula: see text]-benzihomoporphyrin-BODIPY conjugate. The two conjugates were characterized by HR-MS, NMR, absorption, electrochemical, fluorescence and DFT studies. The spectral and electrochemical studies indicated that the two constituents, di-[Formula: see text]-benzihomoporphyrin and BODIPY units in the conjugates interact weakly and retain their individual characteristic features. DFT studies indicated a possibility of charge transfer between di-[Formula: see text]-benzihomoporphyrin and BODIPY units in conjugates.


Molbank ◽  
10.3390/m1271 ◽  
2021 ◽  
Vol 2021 (3) ◽  
pp. M1271
Author(s):  
Massimiliano Cordaro ◽  
Mariachiara Trapani

The development of new dyes for various fields of application is of primary interest for the scientific community, among these BODIPY are widely studied for their versatility. This communication describes the synthesis of a BODIPY dye on which a diacetoamidopyridine moiety is connected in meso position. The synthesis procedure requires a one-pot step and the dye is obtained with a yield of 20%. The diacetoamido portion contains chemical functionalities able to favor the interaction of BODIPY with complementary molecules, such as uracil or thymine, offering potential applications for the design of new functional materials or sensors.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4194
Author(s):  
Wojciech Krzemien ◽  
Monika Rohlickova ◽  
Miloslav Machacek ◽  
Veronika Novakova ◽  
Jaroslaw Piskorz ◽  
...  

The photodynamic properties of a series of non-halogenated, dibrominated and diiodinated BODIPYs with a phthalimido or amino end modification on the phenoxypentyl and phenoxyoctyl linker in the meso position were investigated. Halogen substitution substantially increased the singlet oxygen production based on the heavy atom effect. This increase was accompanied by a higher photodynamic activity against skin melanoma cancer cells SK-MEL-28, with the best compound reaching an EC50 = 0.052 ± 0.01 µM upon light activation. The dark toxicity (toxicity without light activation) of all studied dyes was not detected up to the solubility limit in cell culture medium (10 µM). All studied BODIPY derivatives were predominantly found in adiposomes (lipid droplets) with further lower signals colocalized in either endolysosomal vesicles or the endoplasmic reticulum. A detailed investigation of cell death indicated that the compounds act primarily through the induction of apoptosis. In conclusion, halogenation in the 2,6 position of BODIPY dyes is crucial for the efficient photodynamic activity of these photosensitizers.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1934
Author(s):  
Laurie Neumann ◽  
Lea Könemund ◽  
Valentina Rohnacher ◽  
Annemarie Pucci ◽  
Hans-Hermann Johannes ◽  
...  

Currently used elaborate technologies for the detection of bacteria can be improved in regard to their time consumption, labor intensity, accuracy and reproducibility. Well-known electrical measurement methods might connect highly sensitive sensing systems with biological requirements. The development of modified sensor surfaces with self-assembled monolayers (SAMs) from functionalized porphyrin for bacteria trapping can lead to a highly sensitive sensor for bacteria detection. Different A2BC-type porphyrin structures were synthesized and examined regarding their optical behavior. We achieved the synthesis of a porphyrin for SAM formation on a gold surface as electrode material. Two possible bio linkers were attached on the opposite meso-position of the porphyrin, which allows the porphyrin to react as a linker on the surface for bacteria trapping. Different porphyrin structures were attached to a gold surface, the SAM formation and the respective coverage was investigated.


2021 ◽  
Author(s):  
Keith J Flanagan ◽  
Maximilian Paradiz Dominguez ◽  
Zoi Melissari ◽  
Hans-Georg Eckhardt ◽  
René M Williams ◽  
...  

The use of halogens in the crystal engineering of porphyrin scaffolds has been a topic of strong interest over the past decades. Previously, this was focused on the introduction of a variety of halogens on the meso-phenyl groups of the porphyrin. However, investigations into the effects of direct halogenation of porphyrins at the meso-position on their crystalline architectures have not been conducted to date. Herein we have characterized a series of direct meso-halogenated porphyrins using single crystal X-ray crystallography. This is accompanied by a detailed conformational analysis of all deposited meso-halogenated porphyrins in the CCDC. In this study we have used the Hirshfeld fingerprint plots together with normal-coordinate structural decomposition and determined crystal structures to elucidate the conformation, present intermolecular interactions, and compare respective contacts within the crystalline architectures. Additionally, we have used density functional theory calculations to determine the structure of several halogenated porphyrins. This contrasts conformational analysis with existing X-ray structures and gives a method to characterize samples that are difficult to crystallize.


2021 ◽  
pp. 109268
Author(s):  
Wheeler R. Lovett ◽  
Alaa Al Hamd ◽  
Stefanie Casa ◽  
Maged Henary

Author(s):  
Bhausaheb Dhokale ◽  
Indresh Singh Yadav ◽  
Shaikh M. Mobin ◽  
Rajneesh Misra

Thioether linked meso BODIPY DYEmer 3 was synthesized by two different routes. The reaction of dipyrrothioketone 1 and 8-chloro BODIPY 2 in the presence of triethylamine followed by complexation with [Formula: see text] resulted in thioether linked meso functionalized BODIPY DYEmer 3. Using another route, the reaction of 8-chloro BODIPY 2 with sodium hydrosulphide (NaSH) at room temperature resulted in the thioether linked meso BODIPY DYEmer 3. The DYEmer 3 was characterized by 1H, [Formula: see text]C, [Formula: see text]B, [Formula: see text]F NMR, HRMS, and single crystal X-ray crystallography. The properties of DYEmer 3 was compared with the previously reported thioether linked [Formula: see text] and [Formula: see text] BODIPY DYEmers 4 and 5. The structural parameters indicating the intramolecular arrangements of two BODIPY units of DYEmer were compared and corelated with the observed properties. The time-dependent DFT (TD-DFT) calculations suggested that the thioether group at meso position of BODIPY 3 stabilizes the LUMO energy than 8-chloro BODIPY 2. Compared to 8-chloro BODIPY 2 the HOMO-1 of DYEmer 3 is destabilized whereas the LUMO+1 is stabilized.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koshi Nishida ◽  
Toshifumi Tojo ◽  
Takeshi Kondo ◽  
Makoto Yuasa

AbstractPorphyrin derivatives accumulate selectively in cancer cells and are can be used as carriers of drugs. Until now, the substituents that bind to porphyrins (mainly at the meso-position) have been actively investigated, but the effect of the functional porphyrin positions (β-, meso-position) on tumor accumulation has not been investigated. Therefore, we investigated the correlation between the functional position of substituents and the accumulation of porphyrins in cancer cells using cancer cells. We found that the meso-derivative showed higher accumulation in cancer cells than the β-derivative, and porphyrins with less bulky substituent actively accumulate in cancer cells. When evaluating the intracellular distribution of porphyrin, we found that porphyrin was internalized by endocytosis and direct membrane permeation. As factors involved in these two permeation mechanisms, we evaluated the affinity between porphyrin-protein (endocytosis) and the permeability to the phospholipid bilayer membrane (direct membrane permeation). We found that the binding position of porphyrin affects the factors involved in the transmembrane permeation mechanisms and impacts the accumulation in cancer cells.


Sign in / Sign up

Export Citation Format

Share Document